关注
Shami Nisimov
Shami Nisimov
Research Scientist, Intel Labs
在 intel.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Constructing deep neural networks by Bayesian network structure learning
RY Rohekar, S Nisimov, Y Gurwicz, G Koren, G Novik
Advances in Neural Information Processing Systems 31, 2018
382018
Iterative causal discovery in the possible presence of latent confounders and selection bias
RY Rohekar, S Nisimov, Y Gurwicz, G Novik
Advances in Neural Information Processing Systems 34, 2454-2465, 2021
232021
Modeling uncertainty by learning a hierarchy of deep neural connections
R Yehezkel Rohekar, Y Gurwicz, S Nisimov, G Novik
Advances in neural information processing systems 32, 2019
192019
Bayesian structure learning by recursive bootstrap
RY Rohekar, Y Gurwicz, S Nisimov, G Koren, G Novik
Advances in Neural Information Processing Systems 31, 2018
182018
System and method for learning the structure of deep convolutional neural networks
G Koren, RYY Rohekar, S Nisimov, G Novik
US Patent 11,010,658, 2021
152021
From temporal to contemporaneous iterative causal discovery in the presence of latent confounders
RY Rohekar, S Nisimov, Y Gurwicz, G Novik
International Conference on Machine Learning, 39939-39950, 2023
72023
Causal interpretation of self-attention in pre-trained transformers
RY Rohekar, Y Gurwicz, S Nisimov
Advances in Neural Information Processing Systems 36, 2024
52024
Improving efficiency and accuracy of causal discovery using a hierarchical wrapper
S Nisimov, Y Gurwicz, RY Rohekar, G Novik
arXiv preprint arXiv:2107.05001, 2021
52021
CLEAR: Causal explanations from attention in neural recommenders
S Nisimov, RY Rohekar, Y Gurwicz, G Koren, G Novik
arXiv preprint arXiv:2210.10621, 2022
32022
A single iterative step for anytime causal discovery
RY Rohekar, Y Gurwicz, S Nisimov, G Novik
arXiv preprint arXiv:2012.07513, 2020
12020
Causal explanation of attention-based neural network output
S Nisimov, RYY Rohekar, Y Gurwicz, G Koren, G Novik
US Patent App. 18/325,267, 2023
2023
Techniques for determining artificial neural network topologies
Y Gurwicz, RYY Rohekar, S Nisimov, G Koren, G Novik
US Patent 11,698,930, 2023
2023
Efficient learning and using of topologies of neural networks in machine learning
RYY Rohekar, G Koren, S Nisimov, G Novik
US Patent App. 18/053,538, 2023
2023
Efficient learning and using of topologies of neural networks in machine learning
RYY Rohekar, G Koren, S Nisimov, G Novik
US Patent 11,501,152, 2022
2022
Unsupervised Deep Structure Learning by Recursive Dependency Analysis
RYY Rohekar, G Koren, S Nisimov, G Novik
2018
Supplementary: Constructing Deep Neural Networks by Bayesian Network Structure Learning
RY Rohekar, S Nisimov, Y Gurwicz, G Koren, G Novik
Supplementary Material: Iterative Causal Discovery in the Possible Presence of Latent Confounders and Selection Bias
RY Rohekar, S Nisimov, Y Gurwicz, G Novik
Learning a Hierarchy of Neural Connections for Modeling Uncertainty
RY Rohekar, Y Gurwicz, S Nisimov, G Novik
Unsupervised Deep Structure Learning by Recursive Independence Testing
RYY Rohekar, G Koren, S Nisimov, G Novik
系统目前无法执行此操作,请稍后再试。
文章 1–19