关注
Anson Ho
Anson Ho
Epoch AI
在 epochai.org 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Compute trends across three eras of machine learning
J Sevilla, L Heim, A Ho, T Besiroglu, M Hobbhahn, P Villalobos
2022 International Joint Conference on Neural Networks (IJCNN), 1-8, 2022
2902022
Toward Transparent AI: A Survey on Interpreting the Inner Structures of Deep Neural Networks
T Räuker, A Ho, S Casper, D Hadfield-Menell
arXiv preprint arXiv:2207.13243, 2022
1452022
Will we run out of data? an analysis of the limits of scaling datasets in machine learning
P Villalobos, J Sevilla, L Heim, T Besiroglu, M Hobbhahn, A Ho
arXiv preprint arXiv:2211.04325, 2022
1422022
Machine learning model sizes and the parameter gap
P Villalobos, J Sevilla, T Besiroglu, L Heim, A Ho, M Hobbhahn
arXiv preprint arXiv:2207.02852, 2022
582022
Estimating training compute of Deep Learning models
J Sevilla, L Heim, M Hobbhahn, T Besiroglu, A Ho, P Villalobos
Epoch, January 20, 2022
162022
Parameter, compute and data trends in machine learning
J Sevilla, P Villalobos, JF Cerón, M Burtell, L Heim, AB Nanjajjar, A Ho, ...
2022-05-30]. https://docs. google. com/spreadsheets/d/1AAIebj …, 2021
162021
Algorithmic progress in language models
A Ho, T Besiroglu, E Erdil, D Owen, R Rahman, ZC Guo, D Atkinson, ...
arXiv preprint arXiv:2403.05812, 2024
152024
Will we run out of data
P Villalobos, J Sevilla, L Heim, T Besiroglu, M Hobbhahn, A Ho
An analysis of the limits of scaling datasets in Machine Learning, 2022
112022
Trends in training dataset sizes
P Villalobos, A Ho
Sept, 2022
112022
Compute trends across three eras of machine learning. arXiv
J Sevilla, L Heim, A Ho, T Besiroglu, M Hobbhahn, P Villalobos
arXiv preprint arXiv:2202.05924, 2022
102022
Compute Trends Across Three Eras of Machine Learning.(2022)
J Sevilla, L Heim, A Ho, T Besiroglu, M Hobbhahn, P Villalobos
URL: https://arxiv. org/abs/2202.05924. doi 10, 2022
72022
Please Report Your Compute
J Sevilla, A Ho, T Besiroglu
Communications of the ACM 66 (5), 30-32, 2023
52023
Will we run out of data? an analysis of the limits of scaling datasets in machine learning, 2022
P Villalobos, J Sevilla, L Heim, T Besiroglu, M Hobbhahn, A Ho
URL https://arxiv. org/abs/2211.04325, 0
5
Position: Will we run out of data? Limits of LLM scaling based on human-generated data
P Villalobos, A Ho, J Sevilla, T Besiroglu, L Heim, M Hobbhahn
Forty-first International Conference on Machine Learning, 0
5
Limits to the Energy Efficiency of CMOS Microprocessors
A Ho, E Erdil, T Besiroglu
2023 IEEE International Conference on Rebooting Computing (ICRC), 1-10, 2023
32023
Estimating Idea Production: A Methodological Survey
E Erdil, T Besiroglu, A Ho
arXiv preprint arXiv:2405.10494, 2024
12024
Future-Proof: Monitoring the Development, Deployment, and Impacts of Artificial Intelligence
A Ho
Journal of Science Policy & Governance 22 (3), 2023
2023
2022 International Joint Conference on Neural Networks (IJCNN)
J Sevilla, L Heim, A Ho, T Besiroglu, M Hobbhahn, P Villalobos
IEEE,, 2022
2022
Agarwal, Sapan 148 Agliamzanov, Ramil 1 Aimone, James 6
S Angizi, P Beerel, C Bennett, T Besiroglu, B Bhattacharyya, ...
2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)| 978-1-6654-6299-0/23/$31.00© 2023 IEEE| DOI: 10.1109/SATML54575. 2023.00051
G Abad, K Acharya, H Aghakhani, U Aïvodji, P Altmeyer, HS Anderson, ...
系统目前无法执行此操作,请稍后再试。
文章 1–20