Besov regularity for elliptic boundary value problems S Dahlke, RA DeVore Communications in Partial Differential Equations 22 (1-2), 1-16, 1997 | 192 | 1997 |
Shearlet coorbit spaces and associated Banach frames S Dahlke, G Kutyniok, G Steidl, G Teschke Applied and Computational Harmonic Analysis 27 (2), 195-214, 2009 | 176 | 2009 |
The uncertainty principle associated with the continuous shearlet transform S Dahlke, G Kutyniok, P Maass, C Sagiv, HG Stark, G Teschke International Journal of Wavelets, Multiresolution and Information …, 2008 | 158 | 2008 |
Stable multiscale bases and local error estimation for elliptic problems S Dahlke, W Dahmen, R Hochmuth, R Schneider Applied Numerical Mathematics 23 (1), 21-47, 1997 | 153 | 1997 |
Adaptive frame methods for elliptic operator equations S Dahlke, M Fornasier, T Raasch Advances in Computational Mathematics 27 (1), 27-63, 2007 | 131 | 2007 |
The continuous shearlet transform in arbitrary space dimensions S Dahlke, G Steidl, G Teschke Journal of Fourier Analysis and Applications 16 (3), 340-364, 2010 | 129 | 2010 |
Adaptive wavelet schemes for elliptic problems---Implementation and numerical experiments A Barinka, T Barsch, P Charton, A Cohen, S Dahlke, W Dahmen, K Urban SIAM Journal on scientific computing 23 (3), 910-939, 2001 | 123 | 2001 |
Shearlet coorbit spaces: compactly supported analyzing shearlets, traces and embeddings S Dahlke, G Steidl, G Teschke Journal of Fourier Analysis and Applications 17, 1232-1255, 2011 | 120 | 2011 |
Multiresolution analysis and wavelets on S 2 and S 3 S Dahlke, W Dahmen, I Weinreich, E Schmitt Numerical functional analysis and optimization 16 (1-2), 19-41, 1995 | 114 | 1995 |
Adaptive wavelet methods for saddle point problems---Optimal convergence rates S Dahlke, W Dahmen, K Urban SIAM Journal on Numerical Analysis 40 (4), 1230-1262, 2002 | 108 | 2002 |
Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis S Dahlke, I Weinreich Constructive approximation 9 (2-3), 237-262, 1993 | 108 | 1993 |
Nonlinear approximation and adaptive techniques for solving elliptic operator equations S Dahlke, W Dahmen, RA DeVore Wavelet Analysis and Its Applications 6, 237-283, 1997 | 98 | 1997 |
Adaptive frame methods for elliptic operator equations: The steepest descent approach S Dahlke, T Raasch, M Werner, M Fornasier, R Stevenson IMA Journal of Numerical Analysis 27 (4), 717-740, 2007 | 80 | 2007 |
Besov regularity for elliptic boundary value problems in polygonal domains S Dahlke Applied Mathematics Letters 12 (6), 31-36, 1999 | 78 | 1999 |
Optimal approximation of elliptic problems by linear and nonlinear mappings II S Dahlke, E Novak, W Sickel Journal of Complexity 22 (4), 549-603, 2006 | 74* | 2006 |
Generalized coorbit theory, Banach frames, and the relation to α‐modulation spaces S Dahlke, M Fornasier, H Rauhut, G Steidl, G Teschke Proceedings of the London Mathematical Society 96 (2), 464-506, 2008 | 73 | 2008 |
Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains PA Cioica, S Dahlke, S Kinzel, F Lindner, T Raasch, K Ritter, RL Schilling arXiv preprint arXiv:1011.1814, 2010 | 69 | 2010 |
Coorbit spaces and Banach frames on homogeneous spaces with applications to the sphere S Dahlke, G Steidl, G Teschke Advances in Computational Mathematics 21, 147-180, 2004 | 69 | 2004 |
Spatial Besov regularity for semilinear stochastic partial differential equations on bounded Lipschitz domains PA Cioica, S Dahlke International Journal of Computer Mathematics 89 (18), 2443-2459, 2012 | 66 | 2012 |
The affine uncertainty principle in one and two dimensions S Dahlke, P Maaß Computers & Mathematics with Applications 30 (3-6), 293-305, 1995 | 66 | 1995 |