关注
Vanessa Lleras
Vanessa Lleras
在 umontpellier.fr 的电子邮件经过验证
标题
引用次数
引用次数
年份
Quantifying discretization errors for soft tissue simulation in computer assisted surgery: A preliminary study
M Duprez, SPA Bordas, M Bucki, HP Bui, F Chouly, V Lleras, C Lobos, ...
Applied Mathematical Modelling 77, 709-723, 2020
572020
A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies
S Amdouni, P Hild, V Lleras, M Moakher, Y Renard
ESAIM: Mathematical Modelling and Numerical Analysis 46 (4), 813-839, 2012
502012
Nitsche-based finite element method for contact with Coulomb friction
F Chouly, P Hild, V Lleras, Y Renard
Numerical Mathematics and Advanced Applications ENUMATH 2017, 839-847, 2019
372019
Residual error estimators for Coulomb friction
P Hild, V Lleras
SIAM journal on numerical analysis 47 (5), 3550-3583, 2009
302009
Nitsche method for contact with Coulomb friction: existence results for the static and dynamic finite element formulations
F Chouly, P Hild, V Lleras, Y Renard
Journal of Computational and Applied Mathematics 416, 114557, 2022
262022
Dynamics of red blood cells in 2d
C Bui, V Lleras, O Pantz
ESAIM: Proceedings 28, 182-194, 2009
262009
A new ϕ‐FEM approach for problems with natural boundary conditions
M Duprez, V Lleras, A Lozinski
Numerical Methods for Partial Differential Equations 39 (1), 281-303, 2023
202023
A stabilized Lagrange multiplier method for the finite element approximation of frictional contact problems in elastostatics
V Lleras
Mathematical Modelling of Natural Phenomena 4 (1), 163-182, 2009
142009
Finite element method with local damage of the mesh
M Duprez, V Lleras, A Lozinski
ESAIM: Mathematical modelling and numerical analysis 53 (6), 1871-1891, 2019
132019
ϕ-FEM: an optimally convergent and easily implementable immersed boundary method for particulate flows and Stokes equations
M Duprez, V Lleras, A Lozinski
ESAIM: Mathematical Modelling and Numerical Analysis 57 (3), 1111-1142, 2023
122023
ϕ ‐ FEM : An Efficient Simulation Tool Using Simple Meshes for Problems in Structure Mechanics and Heat Transfer
S Cotin, M Duprez, V Lleras, A Lozinski, K Vuillemot
Partition of Unity Methods, 191-216, 2023
92023
Modélisation, analyse et simulation de problèmes de contact en mécanique des solides et des fluides.
V Lleras
Université de Franche-Comté, 2009
92009
A posteriori error analysis for Poisson's equation approximated by XFEM
P Hild, V Lleras, Y Renard
ESAIM: Proceedings 27, 107-121, 2009
92009
A residual error estimator for the XFEM approximation of the elasticity problem
P Hild, V Lleras, Y Renard
Computational Mechanics, 1-28, 2010
82010
-FEM for the heat equation: optimal convergence on unfitted meshes in space
M Duprez, V Lleras, A Lozinski, K Vuillemot
Comptes Rendus. Mathématique 361 (G11), 1699-1710, 2023
4*2023
Estimateurs d'erreur pour la méthode XFEM
V Lleras, P Hild, Y Renard
8e Colloque national en calcul des structures, 2007
32007
φ-FEM-FNO: a new approach to train a Neural Operator as a fast PDE solver for variable geometries
M Duprez, V Lleras, A Lozinski, V Vigon, K Vuillemot
22024
Study of a depressurisation process at low Mach number in a nuclear reactor core
A Bondesan, S Dellacherie, H Hivert, J Jung, V Lleras, C Mietka, Y Penel
ESAIM: Proceedings and Surveys 55, 41-60, 2016
12016
ϕ-FD: A well-conditioned finite difference method inspired by ϕ-FEM for general geometries on elliptic PDEs
M Duprez, V Lleras, A Lozinski, V Vigon, K Vuillemot
2024
{\varphi}-FD: A well-conditioned finite difference method inspired by {\varphi}-FEM for general geometries on elliptic PDEs
M Duprez, V Lleras, A Lozinski, V Vigon, K Vuillemot
arXiv preprint arXiv:2410.08042, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–20