Quantifying discretization errors for soft tissue simulation in computer assisted surgery: A preliminary study M Duprez, SPA Bordas, M Bucki, HP Bui, F Chouly, V Lleras, C Lobos, ... Applied Mathematical Modelling 77, 709-723, 2020 | 57 | 2020 |
A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies S Amdouni, P Hild, V Lleras, M Moakher, Y Renard ESAIM: Mathematical Modelling and Numerical Analysis 46 (4), 813-839, 2012 | 50 | 2012 |
Nitsche-based finite element method for contact with Coulomb friction F Chouly, P Hild, V Lleras, Y Renard Numerical Mathematics and Advanced Applications ENUMATH 2017, 839-847, 2019 | 37 | 2019 |
Residual error estimators for Coulomb friction P Hild, V Lleras SIAM journal on numerical analysis 47 (5), 3550-3583, 2009 | 30 | 2009 |
Nitsche method for contact with Coulomb friction: existence results for the static and dynamic finite element formulations F Chouly, P Hild, V Lleras, Y Renard Journal of Computational and Applied Mathematics 416, 114557, 2022 | 26 | 2022 |
Dynamics of red blood cells in 2d C Bui, V Lleras, O Pantz ESAIM: Proceedings 28, 182-194, 2009 | 26 | 2009 |
A new ϕ‐FEM approach for problems with natural boundary conditions M Duprez, V Lleras, A Lozinski Numerical Methods for Partial Differential Equations 39 (1), 281-303, 2023 | 20 | 2023 |
A stabilized Lagrange multiplier method for the finite element approximation of frictional contact problems in elastostatics V Lleras Mathematical Modelling of Natural Phenomena 4 (1), 163-182, 2009 | 14 | 2009 |
Finite element method with local damage of the mesh M Duprez, V Lleras, A Lozinski ESAIM: Mathematical modelling and numerical analysis 53 (6), 1871-1891, 2019 | 13 | 2019 |
ϕ-FEM: an optimally convergent and easily implementable immersed boundary method for particulate flows and Stokes equations M Duprez, V Lleras, A Lozinski ESAIM: Mathematical Modelling and Numerical Analysis 57 (3), 1111-1142, 2023 | 12 | 2023 |
ϕ ‐ FEM : An Efficient Simulation Tool Using Simple Meshes for Problems in Structure Mechanics and Heat Transfer S Cotin, M Duprez, V Lleras, A Lozinski, K Vuillemot Partition of Unity Methods, 191-216, 2023 | 9 | 2023 |
Modélisation, analyse et simulation de problèmes de contact en mécanique des solides et des fluides. V Lleras Université de Franche-Comté, 2009 | 9 | 2009 |
A posteriori error analysis for Poisson's equation approximated by XFEM P Hild, V Lleras, Y Renard ESAIM: Proceedings 27, 107-121, 2009 | 9 | 2009 |
A residual error estimator for the XFEM approximation of the elasticity problem P Hild, V Lleras, Y Renard Computational Mechanics, 1-28, 2010 | 8 | 2010 |
-FEM for the heat equation: optimal convergence on unfitted meshes in space M Duprez, V Lleras, A Lozinski, K Vuillemot Comptes Rendus. Mathématique 361 (G11), 1699-1710, 2023 | 4* | 2023 |
Estimateurs d'erreur pour la méthode XFEM V Lleras, P Hild, Y Renard 8e Colloque national en calcul des structures, 2007 | 3 | 2007 |
φ-FEM-FNO: a new approach to train a Neural Operator as a fast PDE solver for variable geometries M Duprez, V Lleras, A Lozinski, V Vigon, K Vuillemot | 2 | 2024 |
Study of a depressurisation process at low Mach number in a nuclear reactor core A Bondesan, S Dellacherie, H Hivert, J Jung, V Lleras, C Mietka, Y Penel ESAIM: Proceedings and Surveys 55, 41-60, 2016 | 1 | 2016 |
ϕ-FD: A well-conditioned finite difference method inspired by ϕ-FEM for general geometries on elliptic PDEs M Duprez, V Lleras, A Lozinski, V Vigon, K Vuillemot | | 2024 |
{\varphi}-FD: A well-conditioned finite difference method inspired by {\varphi}-FEM for general geometries on elliptic PDEs M Duprez, V Lleras, A Lozinski, V Vigon, K Vuillemot arXiv preprint arXiv:2410.08042, 2024 | | 2024 |