Learning with good feature representations in bandits and in rl with a generative model T Lattimore, C Szepesvari, G Weisz International conference on machine learning, 5662-5670, 2020 | 190 | 2020 |
Politex: Regret bounds for policy iteration using expert prediction Y Abbasi-Yadkori, P Bartlett, K Bhatia, N Lazic, C Szepesvari, G Weisz International Conference on Machine Learning, 3692-3702, 2019 | 139 | 2019 |
Exponential lower bounds for planning in mdps with linearly-realizable optimal action-value functions G Weisz, P Amortila, C Szepesvári Algorithmic Learning Theory, 1237-1264, 2021 | 96 | 2021 |
Sample efficient deep reinforcement learning for dialogue systems with large action spaces G Weisz, P Budzianowski, PH Su, M Gašić IEEE/ACM Transactions on Audio, Speech, and Language Processing 26 (11 …, 2018 | 96 | 2018 |
LeapsAndBounds: A method for approximately optimal algorithm configuration G Weisz, A Gyorgy, C Szepesvári International Conference on Machine Learning, 5257-5265, 2018 | 43 | 2018 |
Exploration-enhanced politex Y Abbasi-Yadkori, N Lazic, C Szepesvari, G Weisz arXiv preprint arXiv:1908.10479, 2019 | 35 | 2019 |
CapsAndRuns: An improved method for approximately optimal algorithm configuration G Weisz, A Gyorgy, C Szepesvári International Conference on Machine Learning, 6707-6715, 2019 | 27 | 2019 |
On query-efficient planning in mdps under linear realizability of the optimal state-value function G Weisz, P Amortila, B Janzer, Y Abbasi-Yadkori, N Jiang, C Szepesvári Conference on Learning Theory, 4355-4385, 2021 | 22 | 2021 |
Tensorplan and the few actions lower bound for planning in mdps under linear realizability of optimal value functions G Weisz, C Szepesvári, A György International Conference on Algorithmic Learning Theory, 1097-1137, 2022 | 14 | 2022 |
Confident Approximate Policy Iteration for Efficient Local Planning in -realizable MDPs G Weisz, A György, T Kozuno, C Szepesvári Advances in Neural Information Processing Systems 35, 25547-25559, 2022 | 10 | 2022 |
Optimistic natural policy gradient: a simple efficient policy optimization framework for online rl Q Liu, G Weisz, A György, C Jin, C Szepesvári Advances in Neural Information Processing Systems 36, 2024 | 7 | 2024 |
Inter-device data transfer based on barcodes J Chien, R Ian Orton, G Weisz, V Varma US Patent 9,600,701, 2017 | 7 | 2017 |
ImpatientCapsAndRuns: Approximately optimal algorithm configuration from an infinite pool G Weisz, A György, WI Lin, D Graham, K Leyton-Brown, C Szepesvari, ... Advances in Neural Information Processing Systems 33, 17478-17488, 2020 | 6 | 2020 |
Exponential hardness of reinforcement learning with linear function approximation S Liu, G Mahajan, D Kane, S Lovett, G Weisz, C Szepesvári The Thirty Sixth Annual Conference on Learning Theory, 1588-1617, 2023 | 5* | 2023 |
Online RL in Linearly -Realizable MDPs Is as Easy as in Linear MDPs If You Learn What to Ignore G Weisz, A György, C Szepesvári Advances in Neural Information Processing Systems 36, 2024 | 4 | 2024 |
Trajectory Data Suffices for Statistically Efficient Learning in Offline RL with Linear -Realizability and Concentrability V Tkachuk, G Weisz, C Szepesvári arXiv preprint arXiv:2405.16809, 2024 | | 2024 |
The Complexity of Reinforcement Learning with Linear Function Approximation G Weisz UCL (Univesity College London), 2024 | | 2024 |
P: Regret Bounds for Policy Iteration Using Expert Prediction Y Abbasi-Yadkori, PL Bartle, K Bhatia, N Lazić, C Szepesvári, G Weisz | | |