关注
Ganesh Sivaraman
Ganesh Sivaraman
未知所在单位机构
在 illinois.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide
G Sivaraman, AN Krishnamoorthy, M Baur, C Holm, M Stan, G Csányi, ...
npj Computational Materials 6 (1), 104, 2020
1372020
Comparative dataset of experimental and computational attributes of UV/vis absorption spectra
EJ Beard, G Sivaraman, Á Vázquez-Mayagoitia, V Vishwanath, JM Cole
Scientific data 6 (1), 307, 2019
752019
DFT accurate interatomic potential for molten NaCl from machine learning
S Tovey, A Narayanan Krishnamoorthy, G Sivaraman, J Guo, C Benmore, ...
The Journal of Physical Chemistry C 124 (47), 25760-25768, 2020
592020
A machine learning workflow for molecular analysis: application to melting points
G Sivaraman, NE Jackson, B Sanchez-Lengeling, Á Vázquez-Mayagoitia, ...
Machine Learning: Science and Technology 1 (2), 025015, 2020
422020
Hybrid 2D nanodevices (graphene/h-BN): selecting NO x gas through the device interface
FAL de Souza, G Sivaraman, J Hertkorn, RG Amorim, M Fyta, WL Scopel
Journal of Materials Chemistry A 7 (15), 8905-8911, 2019
382019
Automated development of molten salt machine learning potentials: application to LiCl
G Sivaraman, J Guo, L Ward, N Hoyt, M Williamson, I Foster, C Benmore, ...
The Journal of Physical Chemistry Letters 12 (17), 4278-4285, 2021
372021
Diamondoid-functionalized gold nanogaps as sensors for natural, mutated, and epigenetically modified DNA nucleotides
G Sivaraman, RG Amorim, RH Scheicher, M Fyta
Nanoscale 8 (19), 10105-10112, 2016
372016
Colmena: Scalable machine-learning-based steering of ensemble simulations for high performance computing
L Ward, G Sivaraman, JG Pauloski, Y Babuji, R Chard, N Dandu, ...
2021 IEEE/ACM Workshop on Machine Learning in High Performance Computing …, 2021
362021
Experimentally driven automated machine-learned interatomic potential for a refractory oxide
G Sivaraman, L Gallington, AN Krishnamoorthy, M Stan, G Csányi, ...
Physical Review Letters 126 (15), 156002, 2021
362021
Chemically modified diamondoids as biosensors for DNA
G Sivaraman, M Fyta
Nanoscale 6, 4225, 2014
282014
Electrically sensing Hachimoji DNA nucleotides through a hybrid graphene/h-BN nanopore
FAL de Souza, G Sivaraman, M Fyta, RH Scheicher, WL Scopel, ...
Nanoscale 12 (35), 18289-18295, 2020
272020
Structural phase transitions between layered indium selenide for integrated photonic memory
T Li, Y Wang, W Li, D Mao, CJ Benmore, I Evangelista, H Xing, Q Li, ...
Advanced Materials 34 (26), 2108261, 2022
232022
Coarse-grained density functional theory predictions via deep kernel learning
G Sivaraman, NE Jackson
Journal of Chemical Theory and Computation 18 (2), 1129-1141, 2022
222022
Uncertainty-informed deep transfer learning of perfluoroalkyl and polyfluoroalkyl substance toxicity
J Feinstein, G Sivaraman, K Picel, B Peters, Á Vázquez-Mayagoitia, ...
Journal of chemical information and modeling 61 (12), 5793-5803, 2021
182021
Electronic Transport along Hybrid MoS2 Monolayers
G Sivaraman, FAL De Souza, RG Amorim, WL Scopel, M Fyta, ...
The Journal of Physical Chemistry C 120 (41), 23389-23396, 2016
162016
Co-design center for exascale machine learning technologies (exalearn)
FJ Alexander, J Ang, JA Bilbrey, J Balewski, T Casey, R Chard, J Choi, ...
The International Journal of High Performance Computing Applications 35 (6 …, 2021
152021
Benchmark investigation of diamondoid-functionalized electrodes for nanopore DNA sequencing
G Sivaraman, RG Amorim, RH Scheicher, M Fyta
Nanotechnology 27 (41), 414002, 2016
142016
A combined machine learning and high-energy x-ray diffraction approach to understanding liquid and amorphous metal oxides
G Sivaraman, G Csanyi, A Vazquez-Mayagoitia, IT Foster, SK Wilke, ...
Journal of the Physical Society of Japan 91 (9), 091009, 2022
112022
Machine learning interatomic potential for silicon-nitride (Si3N4) by active learning
D Milardovich, C Wilhelmer, D Waldhoer, L Cvitkovich, G Sivaraman, ...
The Journal of Chemical Physics 158 (19), 2023
102023
Composition-transferable machine learning potential for LiCl-KCl molten salts validated by high-energy x-ray diffraction
J Guo, L Ward, Y Babuji, N Hoyt, M Williamson, I Foster, N Jackson, ...
Physical Review B 106 (1), 014209, 2022
10*2022
系统目前无法执行此操作,请稍后再试。
文章 1–20