An interior algorithm for nonlinear optimization that combines line search and trust region steps RA Waltz, JL Morales, J Nocedal, D Orban Mathematical Programming 107 (3), 391-408, 2006 | 1308 | 2006 |
CUTEr and SifDec: a constrained and unconstrained testing environment, revisited NI Gould, D Orban, PL Toint ACM Transactions on Mathematical Software (TOMS) 29 (4), 373-394, 2004 | 785 | 2004 |
CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization NIM Gould, D Orban, PL Toint Computational Optimization and Applications, 1-13, 2014 | 439 | 2014 |
GALAHAD, a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization NIM Gould, D Orban, PL Toint ACM Transactions on Mathematical Software (TOMS) 29 (4), 353-372, 2003 | 272 | 2003 |
Numerical methods for large-scale nonlinear optimization N Gould, D Orban, P Toint Acta Numerica 14 (1), 299-361, 2005 | 222 | 2005 |
Finding optimal algorithmic parameters using derivative-free optimization C Audet, D Orban SIAM Journal on Optimization 17 (3), 642-664, 2006 | 206* | 2006 |
A primal-dual trust-region algorithm for non-convex nonlinear programming AR Conn, NIM Gould, D Orban, PL Toint Mathematical Programming 87 (2), 215-249, 2000 | 176* | 2000 |
A primal–dual regularized interior-point method for convex quadratic programs MP Friedlander, D Orban Mathematical Programming Computation 4 (1), 71-107, 2012 | 106 | 2012 |
Superlinear convergence of primal-dual interior point algorithms for nonlinear programming NIM Gould, D Orban, A Sartenaer, PL Toint SIAM Journal on Optimization 11 (4), 974-1002, 2001 | 106 | 2001 |
Sensitivity of trust-region algorithms to their parameters NIM Gould, D Orban, A Sartenaer, PL Toint 4OR 3 (3), 227-241, 2005 | 65 | 2005 |
Reduction of beam-hardening artifacts in X-ray CT N Menvielle, Y Goussard, D Orban, G Soulez 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 1865-1868, 2006 | 64 | 2006 |
An Interior-Point ℓ 1-Penalty Method for Nonlinear Optimization NIM Gould, D Orban, PL Toint Numerical Analysis and Optimization, 117-150, 2015 | 63 | 2015 |
Bounds on eigenvalues of matrices arising from interior-point methods C Greif, E Moulding, D Orban SIAM Journal on Optimization 24 (1), 49-83, 2014 | 62 | 2014 |
Projected Krylov methods for saddle-point systems N Gould, D Orban, T Rees Cahier du GERAD G-2013-23, GERAD, Montréal, Québec, Canada, 2013 | 47 | 2013 |
Iterative Solution of Symmetric Quasi-Definite Linear Systems D Orban, M Arioli Society for Industrial and Applied Mathematics, 2017 | 42 | 2017 |
Algorithmic parameter optimization of the DFO method with the OPAL framework C Audet, CK Dang, D Orban Software Automatic Tuning: From Concepts to State-of-the-Art Results, 255-274, 2010 | 40 | 2010 |
Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming P Armand, J Benoist, D Orban Computational Optimization and Applications 41 (1), 1-25, 2008 | 35 | 2008 |
Optimization of algorithms with OPAL C Audet, KC Dang, D Orban Mathematical Programming Computation 6 (3), 233-254, 2014 | 33 | 2014 |
A new version of the Improved Primal Simplex for degenerate linear programs V Raymond, F Soumis, D Orban Computers & Operations Research 37 (1), 91-98, 2010 | 33 | 2010 |
Properties of the log-barrier function on degenerate nonlinear programs SJ Wright, D Orban Mathematics of Operations Research 27 (3), 585-613, 2002 | 31 | 2002 |