Mathematical modeling of biofilms O Wanner, HJ Eberl, E Morgenroth, DR Noguera, C Picioreanu, ... International Water Association (IWA), 2005 | 425 | 2005 |
A new deterministic spatio-temporal continuum model for biofilm development MCM Hermann J Eberl, David F. Parker Journal of Theoretical Medicine 3 (3), 167-175, 2001 | 311* | 2001 |
Mathematical modelling of biofilm structures MCM Van Loosdrecht, JJ Heijnen, H Eberl, J Kreft, C Picioreanu Antonie van Leeuwenhoek 81, 245-256, 2002 | 303 | 2002 |
A mathematical model of quorum sensing regulated EPS production in biofilm communities MR Frederick, C Kuttler, BA Hense, HJ Eberl Theoretical Biology and Medical Modelling 8, 1-29, 2011 | 275 | 2011 |
A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in biofilms HJ Eberl, C Picioreanu, JJ Heijnen, MCM Van Loosdrecht Chemical Engineering Science 55 (24), 6209-6222, 2000 | 210 | 2000 |
A mathematical model of quorum sensing induced biofilm detachment BO Emerenini, BA Hense, C Kuttler, HJ Eberl PloS one 10 (7), e0132385, 2015 | 107 | 2015 |
A finite difference scheme for a degenerated diffusion equation arising in microbial ecology HJ Eberl, L Demaret Electron. J. Differ. Equ 15, 77-95, 2007 | 106 | 2007 |
Mathematical modelling of biofilms C Picioreanu, B Rittmann, M Van Loosdrecht IWA Publishing, London, UK, 2006 | 101* | 2006 |
Exposure of biofilms to slow flow fields: the convective contribution to growth and disinfection HJ Eberl, R Sudarsan Journal of theoretical biology 253 (4), 788-807, 2008 | 78 | 2008 |
Comparing biofilm models for a single species biofilm system E Morgenroth, HJ Eberl, MCM Van Loosdrecht, DR Noguera, GE Pizarro, ... Water Science and Technology 49 (11-12), 145-154, 2004 | 59 | 2004 |
A mixed-culture biofilm model with cross-diffusion KA Rahman, R Sudarsan, HJ Eberl Bulletin of mathematical biology 77, 2086-2124, 2015 | 56 | 2015 |
Importance of brood maintenance terms in simple models of the honeybee-Varroa destructor-acute bee paralysis virus complex. HJ Eberl, MR Frederick, PG Kevan Electronic Journal of Differential Equations (EJDE)[electronic only] 2010, 85-98, 2010 | 56 | 2010 |
EXISTENCE AND LONGTIME BEHAVIOR OF SOLUTIONS OF A NONLINEAR REACTION-DIFFUSION SYSTEM ARISING IN THE MODELING OF BIOFILMS (Nonlinear Diffusive Systems and Related Topics) MA Efendiev, HJ Eberl, SV Zelik 数理解析研究所講究録 1258, 49-71, 2002 | 55 | 2002 |
Evaluating 3-D and 1-D mathematical models for mass transport in heterogeneous biofilms E Morgenroth, H Eberl, MC van Loosdrecht Water Science and Technology 41 (4-5), 347-356, 2000 | 55 | 2000 |
A mathematical model for population dynamics in honeybee colonies infested with Varroa destructor and the Acute Bee Paralysis Virus V Ratti, PG Kevan, HJ Eberl Canadian Applied Mathematics Quarterly 21 (1), 63-93, 2012 | 54 | 2012 |
Flow currents and ventilation in Langstroth beehives due to brood thermoregulation efforts of honeybees R Sudarsan, C Thompson, PG Kevan, HJ Eberl Journal of theoretical biology 295, 168-193, 2012 | 53 | 2012 |
A Mathematical Model of the Honeybee–Varroa destructor–Acute Bee Paralysis Virus System with Seasonal Effects V Ratti, PG Kevan, HJ Eberl Bulletin of mathematical biology 77, 1493-1520, 2015 | 46 | 2015 |
A modeling and simulation study of the role of suspended microbial populations in nitrification in a biofilm reactor A Mašić, HJ Eberl Bulletin of mathematical biology 76, 27-58, 2014 | 44 | 2014 |
Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates F Abbas, R Sudarsan, HJ Eberl Mathematical Biosciences & Engineering 9 (2), 215-239, 2012 | 44 | 2012 |
A Mathematical Model of Forager Loss in Honeybee Colonies Infested with Varroa destructor and the Acute Bee Paralysis Virus V Ratti, PG Kevan, HJ Eberl Bulletin of mathematical biology 79, 1218-1253, 2017 | 43 | 2017 |