关注
Matt Amos
Matt Amos
在 lancaster.ac.uk 的电子邮件经过验证
标题
引用次数
引用次数
年份
Projecting ozone hole recovery using an ensemble of chemistry–climate models weighted by model performance and independence
M Amos, PJ Young, JS Hosking, JF Lamarque, NL Abraham, H Akiyoshi, ...
Atmospheric Chemistry and Physics 20 (16), 9961-9977, 2020
292020
Ensembling geophysical models with Bayesian neural networks
U Sengupta, M Amos, JS Hosking, CE Rasmussen, M Juniper, PJ Young
Advances in Neural Information Processing Systems 33, 2020
252020
The Bristol CMIP6 data hackathon
DM Mitchell, EJ Stone, OD Andrews, JL Bamber, RJ Bingham, J Browse, ...
Weather 77 (6), 218-221, 2022
72022
Update on Global Ozone: Past, Present, and Future
B Hassler, PJ Young, WT Ball, R Damadeo, J Keeble, E Maillard Barras, ...
52022
Flyway‐scale analysis reveals that the timing of migration in wading birds is becoming later
TO Mondain‐Monval, M Amos, JL Chapman, A MacColl, SP Sharp
Ecology and evolution 11 (20), 14135-14145, 2021
32021
A continuous vertically resolved ozone dataset from the fusion of chemistry climate models with observations using a Bayesian neural network
M Amos, U Sengupta, P Young, JS Hosking
EarthArXiv, 2021
22021
LancasterAQ: A High Resolution Street Level Dataset of Ultrafine Particles
M Amos, D Booker, R Duncan, L Gouldsbrough, T Pinder, PJ Young, ...
EarthArXiv, 2022
2022
Improving the robustness, accuracy, and utility of chemistry-climate model ensembles
M Amos
PQDT-Global, 2022
2022
Fusing model ensembles and observations together with Bayesian neural networks
M Amos, U Sengupta, S Hosking, P Young
EGU General Assembly Conference Abstracts, EGU21-11905, 2021
2021
Identifying latent climate signals using sparse hierarchical Gaussian processes
M Amos, T Pinder, PJ Young
Ensembling geophysical models with Bayesian Neural
U Sengupta, M Amos, JS Hosking
系统目前无法执行此操作,请稍后再试。
文章 1–11