关注
Katie Shpanskaya, MD
Katie Shpanskaya, MD
在 duke.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning
P Rajpurkar, J Irvin, K Zhu, B Yang, H Mehta, T Duan, D Ding, A Bagul, ...
arXiv preprint arXiv:1711.05225, 2017
29802017
Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison
J Irvin, P Rajpurkar, M Ko, Y Yu, S Ciurea-Ilcus, C Chute, H Marklund, ...
Proceedings of the AAAI conference on artificial intelligence 33 (01), 590-597, 2019
24192019
Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists
P Rajpurkar, J Irvin, RL Ball, K Zhu, B Yang, H Mehta, T Duan, D Ding, ...
PLoS medicine 15 (11), e1002686, 2018
11282018
Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet
N Bien, P Rajpurkar, RL Ball, J Irvin, A Park, E Jones, M Bereket, BN Patel, ...
PLoS medicine 15 (11), e1002699, 2018
6272018
Mura: Large dataset for abnormality detection in musculoskeletal radiographs
P Rajpurkar, J Irvin, A Bagul, D Ding, T Duan, H Mehta, B Yang, K Zhu, ...
arXiv preprint arXiv:1712.06957, 2017
3272017
Deep learning–assisted diagnosis of cerebral aneurysms using the HeadXNet model
A Park, C Chute, P Rajpurkar, J Lou, RL Ball, K Shpanskaya, ...
JAMA network open 2 (6), e195600-e195600, 2019
2172019
Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv
P Rajpurkar, J Irvin, K Zhu, B Yang, H Mehta, T Duan, D Ding, A Bagul, ...
arXiv preprint arXiv:1711.05225 10, 2017
1712017
CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. 2017
P Rajpurkar, J Irvin, K Zhu, B Yang, H Mehta, T Duan, D Ding, A Bagul, ...
arXiv preprint arXiv:1711.05225, 2020
1342020
PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
SC Huang, T Kothari, I Banerjee, C Chute, RL Ball, N Borus, A Huang, ...
NPJ digital medicine 3 (1), 61, 2020
126*2020
Sex differences in cognitive decline in subjects with high likelihood of mild cognitive impairment due to Alzheimer’s disease
D Sohn, K Shpanskaya, JE Lucas, JR Petrella, AJ Saykin, RE Tanzi, ...
Scientific reports 8 (1), 7490, 2018
1252018
MR imaging–based radiomic signatures of distinct molecular subgroups of medulloblastoma
M Iv, M Zhou, K Shpanskaya, S Perreault, Z Wang, E Tranvinh, ...
American Journal of Neuroradiology 40 (1), 154-161, 2019
1082019
Automated abnormality detection in lower extremity radiographs using deep learning
M Varma, M Lu, R Gardner, J Dunnmon, N Khandwala, P Rajpurkar, ...
Nature Machine Intelligence 1 (12), 578-583, 2019
742019
Mura dataset: Towards radiologist-level abnormality detection in musculoskeletal radiographs
P Rajpurkar, J Irvin, A Bagul, D Ding, T Duan, H Mehta, B Yang, K Zhu, ...
Medical imaging with deep learning, 2017
642017
Deep learning for pediatric posterior fossa tumor detection and classification: a multi-institutional study
JL Quon, W Bala, LC Chen, J Wright, LH Kim, M Han, K Shpanskaya, ...
American Journal of Neuroradiology 41 (9), 1718-1725, 2020
562020
Mapping the effects of ApoE4, age and cognitive status on 18F-florbetapir PET measured regional cortical patterns of beta-amyloid density and growth
KR Murphy, SM Landau, KR Choudhury, CA Hostage, KS Shpanskaya, ...
Neuroimage 78, 474-480, 2013
562013
Educational attainment and hippocampal atrophy in the Alzheimer's disease neuroimaging initiative cohort
KS Shpanskaya, KR Choudhury, C Hostage Jr, KR Murphy, JR Petrella, ...
Journal of Neuroradiology 41 (5), 350-357, 2014
392014
MRI radiogenomics of pediatric medulloblastoma: a multicenter study
M Zhang, SW Wong, JN Wright, MW Wagner, S Toescu, M Han, LT Tam, ...
Radiology 304 (2), 406-416, 2022
382022
Attention-guided deep learning for gestational age prediction using fetal brain MRI
L Shen, J Zheng, EH Lee, K Shpanskaya, ES McKenna, MG Atluri, ...
Scientific reports 12 (1), 1408, 2022
272022
Age-dependent white matter characteristics of the cerebellar peduncles from infancy through adolescence
L Bruckert, K Shpanskaya, ES McKenna, LR Borchers, M Yablonski, ...
The Cerebellum 18, 372-387, 2019
252019
Impact of 18F-florbetapir PET imaging of β-amyloid neuritic plaque density on clinical decision-making
AS Zannas, PM Doraiswamy, KS Shpanskaya, KR Murphy, JR Petrella, ...
Neurocase 20 (4), 466-473, 2014
242014
系统目前无法执行此操作,请稍后再试。
文章 1–20