A class of new stable, explicit methods to solve the non‐stationary heat equation E Kovács Numerical Methods for Partial Differential Equations 37 (3), 2469-2489, 2021 | 34 | 2021 |
Stable, explicit, leapfrog-hopscotch algorithms for the diffusion equation Á Nagy, I Omle, H Kareem, E Kovács, IF Barna, G Bognar Computation 9 (8), 92, 2021 | 32 | 2021 |
New stable, explicit, first order method to solve the heat conduction equation E Kovács arXiv preprint arXiv:1908.09500, 2019 | 29 | 2019 |
New stable, explicit, shifted-hopscotch algorithms for the heat equation Á Nagy, M Saleh, I Omle, H Kareem, E Kovács Mathematical and Computational Applications 26 (3), 61, 2021 | 28 | 2021 |
CONSTRUCTION AND INVESTIGATION OF NEW NUMERICAL ALGORITHMS FOR THE HEAT EQUATION Part 3 M Saleh, Á Nagy, E Kovács Multidiszciplináris tudományok 10 (4), 349-360, 2020 | 25 | 2020 |
Correlation and confinement induced itinerant ferromagnetism in chain structures R Trencsenyi, E Kovacs, Z Gulacsi Philosophical Magazine 89 (22-24), 1953-1974, 2009 | 20 | 2009 |
Explicit stable finite difference methods for diffusion-reaction type equations HK Jalghaf, E Kovács, J Majár, Á Nagy, AH Askar Mathematics 9 (24), 3308, 2021 | 19 | 2021 |
A set of new stable, explicit, second order schemes for the non-stationary heat conduction equation E Kovács, Á Nagy, M Saleh Mathematics 9 (18), 2284, 2021 | 19 | 2021 |
New analytical results and comparison of 14 numerical schemes for the diffusion equation with space-dependent diffusion coefficient M Saleh, E Kovács, IF Barna, L Mátyás Mathematics 10 (15), 2813, 2022 | 16 | 2022 |
A new stable, explicit, third‐order method for diffusion‐type problems E Kovács, Á Nagy, M Saleh Advanced Theory and Simulations 5 (6), 2100600, 2022 | 15 | 2022 |
New stable method to solve heat conduction problems in extremely large systems E Kovács, A Gilicz arXiv preprint arXiv:1908.11852, 2019 | 11 | 2019 |
Analytical and Numerical Results for the Transient Diffusion Equation with Diffusion Coefficient Depending on Both Space and Time M Saleh, E Kovács, IF Barna Algorithms 16 (4), 184, 2023 | 10 | 2023 |
Comparison of old and new stable explicit methods for heat conduction, convection, and radiation in an insulated wall with thermal bridging HK Jalghaf, E Kovács, B Bolló Buildings 12 (9), 1365, 2022 | 10 | 2022 |
Solution of the 1D KPZ equation by explicit methods O Sayfidinov, G Bognár, E Kovács Symmetry 14 (4), 699, 2022 | 10 | 2022 |
Switching dynamics of doped CoFeB trilayers and a comparison to the quasistatic approximation M Forrester, F Kusmartsev, E Kovács Physical Review B—Condensed Matter and Materials Physics 87 (17), 174416, 2013 | 10 | 2013 |
A Comparative Study of Explicit and Stable Time Integration Schemes for Heat Conduction in an Insulated Wall H Kareem Jalghaf, I Omle, E Kovács Buildings 12 (6), 824, 2022 | 9 | 2022 |
New explicit asymmetric hopscotch methods for the heat conduction equation M Saleh, E Kovács Computer Sciences & Mathematics Forum 2 (1), 22, 2021 | 9 | 2021 |
Exact ground states for polyphenylene type of hexagon chains R Trencsényi, K Gulácsi, E Kovács, Z Gulácsi Annalen der Physik 523 (8‐9), 741-750, 2011 | 9 | 2011 |
An extension of a characterization of the automorphisms of Hilbert space effect algebras L Molnar, E Kovács Reports on Mathematical Physics 52 (1), 141-149, 2003 | 9 | 2003 |
Consistency and convergence properties of 20 recent and old numerical schemes for the diffusion equation Á Nagy, J Majár, E Kovács Algorithms 15 (11), 425, 2022 | 8 | 2022 |