A robust and efficient implementation for the segment Voronoi diagram MI Karavelas International symposium on Voronoi diagrams in science and engineering 2004 …, 2004 | 124 | 2004 |
The predicates of the Apollonius diagram: algorithmic analysis and implementation IZ Emiris, MI Karavelas Computational Geometry 33 (1-2), 18-57, 2006 | 98* | 2006 |
Scalable nonlinear dynamical systems for agent steering and crowd simulation S Goldenstein, M Karavelas, D Metaxas, L Guibas, E Aaron, A Goswami Computers & Graphics 25 (6), 983-998, 2001 | 97 | 2001 |
Dynamic additively weighted Voronoi diagrams in 2D MI Karavelas, M Yvinec European Symposium on Algorithms, 586-598, 2002 | 92 | 2002 |
On the combinatorial complexity of Euclidean Voronoi cells and convex hulls of d-dimensional spheres JD Boissonnat, MI Karavelas SODA 3, 305-312, 2003 | 87 | 2003 |
The Voronoi diagram of planar convex objects M Karavelas, M Yvinec Algorithms-ESA 2003, 337-348, 2003 | 64* | 2003 |
G1-smooth branching surface construction from cross sections NC Gabrielides, AI Ginnis, PD Kaklis, MI Karavelas Computer-Aided Design 39 (8), 639-651, 2007 | 51 | 2007 |
Static and kinetic geometric spanners with applications. MI Karavelas, LJ Guibas SODA, 168-176, 2001 | 51 | 2001 |
Shape-preserving interpolation in R3 PD Kaklis, MI Karavelas IMA journal of numerical analysis 17 (3), 373-419, 1997 | 51 | 1997 |
Experimental evaluation and cross-benchmarking of univariate real solvers M Hemmer, EP Tsigaridas, Z Zafeirakopoulos, IZ Emiris, MI Karavelas, ... Proceedings of the 2009 conference on Symbolic numeric computation, 45-54, 2009 | 47 | 2009 |
A Computational Framework for Handling Motion. LJ Guibas, MI Karavelas, D Russel ALENEX/ANALC, 129-141, 2004 | 38 | 2004 |
Root comparison techniques applied to computing the additively weighted Voronoi diagram. MI Karavelas, IZ Emiris SODA, 320-329, 2003 | 36 | 2003 |
2D segment Delaunay graphs M Karavelas CGAL User and Reference Manual. CGAL Editorial Board 4 (1), 2019 | 25 | 2019 |
Bounding the distance between 2D parametric Bézier curves and their control polygon MI Karavelas, PD Kaklis, KV Kostas Computing 72, 117-128, 2004 | 24 | 2004 |
2D Voronoi diagram adaptor M Karavelas part of The Computational Geometry Algorithms Library version 5 (2), 2010 | 23 | 2010 |
Interval methods for kinetic simulations LJ Guibas, MI Karavelas Proceedings of the fifteenth annual symposium on Computational Geometry, 255-264, 1999 | 22 | 1999 |
Guarding curvilinear art galleries with vertex or point guards MI Karavelas, CD Tóth, EP Tsigaridas Computational Geometry 42 (6-7), 522-535, 2009 | 21 | 2009 |
A package for exact kinetic data structures and sweepline algorithms D Russel, MI Karavelas, LJ Guibas Computational Geometry 38 (1-2), 111-127, 2007 | 19 | 2007 |
Voronoi diagrams in CGAL MI Karavelas 22nd European workshop on computational geometry, 229-232, 2006 | 19 | 2006 |
Spatial shape‐preserving interpolation using ν‐splines MI Karavelas, PD Kaklis Numerical Algorithms 23, 217-250, 2000 | 16 | 2000 |