Using reward machines for high-level task specification and decomposition in reinforcement learning RT Icarte, T Klassen, R Valenzano, S McIlraith International Conference on Machine Learning, 2107-2116, 2018 | 306 | 2018 |
LTL and Beyond: Formal Languages for Reward Function Specification in Reinforcement Learning. A Camacho, RT Icarte, TQ Klassen, RA Valenzano, SA McIlraith IJCAI 19, 6065-6073, 2019 | 236 | 2019 |
Reward machines: Exploiting reward function structure in reinforcement learning RT Icarte, TQ Klassen, R Valenzano, SA McIlraith Journal of Artificial Intelligence Research 73, 173-208, 2022 | 180 | 2022 |
Teaching multiple tasks to an RL agent using LTL R Toro Icarte, TQ Klassen, R Valenzano, SA McIlraith Proceedings of the 17th International Conference on Autonomous Agents and …, 2018 | 142 | 2018 |
Learning reward machines for partially observable reinforcement learning R Toro Icarte, E Waldie, T Klassen, R Valenzano, M Castro, S McIlraith Advances in neural information processing systems 32, 2019 | 137 | 2019 |
Evaluating state-space abstractions in extensive-form games M Johanson, N Burch, R Valenzano, M Bowling Proceedings of the 2013 international conference on Autonomous agents and …, 2013 | 99 | 2013 |
Simultaneously searching with multiple settings: An alternative to parameter tuning for suboptimal single-agent search algorithms R Valenzano, N Sturtevant, J Schaeffer, K Buro, A Kishimoto Proceedings of the International Conference on Automated Planning and …, 2010 | 65 | 2010 |
A comparison of knowledge-based GBFS enhancements and knowledge-free exploration R Valenzano, N Sturtevant, J Schaeffer, F Xie Proceedings of the International Conference on Automated Planning and …, 2014 | 47 | 2014 |
Arvandherd: Parallel planning with a portfolio R Valenzano, H Nakhost, M Müller, J Schaeffer, N Sturtevant ECAI 2012, 786-791, 2012 | 44 | 2012 |
Advice-based exploration in model-based reinforcement learning R Toro Icarte, TQ Klassen, RA Valenzano, SA McIlraith Advances in Artificial Intelligence: 31st Canadian Conference on Artificial …, 2018 | 30 | 2018 |
Using alternative suboptimality bounds in heuristic search R Valenzano, SJ Arfaee, J Thayer, R Stern, N Sturtevant Proceedings of the International Conference on Automated Planning and …, 2013 | 26 | 2013 |
Arvand: the art of random walks H Nakhost, M Müller, R Valenzano, F Xie The, 15-16, 2011 | 19 | 2011 |
On the completeness of best-first search variants that use random exploration R Valenzano, F Xie Proceedings of the AAAI Conference on Artificial Intelligence 30 (1), 2016 | 18 | 2016 |
Worst-case solution quality analysis when not re-expanding nodes in best-first search R Valenzano, N Sturtevant, J Schaeffer Proceedings of the AAAI Conference on Artificial Intelligence 28 (1), 2014 | 13 | 2014 |
Better time constrained search via randomization and postprocessing F Xie, R Valenzano, M Müller Proceedings of the International Conference on Automated Planning and …, 2013 | 10 | 2013 |
Probably bounded suboptimal heuristic search R Stern, G Dreiman, R Valenzano Artificial Intelligence 267, 39-57, 2019 | 8 | 2019 |
The act of remembering: a study in partially observable reinforcement learning RT Icarte, R Valenzano, TQ Klassen, P Christoffersen, A Farahmand, ... arXiv preprint arXiv:2010.01753, 2020 | 7 | 2020 |
Arvandherd 2014 R Valenzano, H Nakhost, M Müller, J Schaeffer, N Sturtevant The Eighth International Planning Competition. Description of Participant …, 2014 | 7 | 2014 |
Searching for Markovian subproblems to address partially observable reinforcement learning RT Icarte, E Waldie, TQ Klassen, R Valenzano, MP Castro, SA McIlraith Proceedings of the 4th Multi-disciplinary Conference on Reinforcement …, 2019 | 6 | 2019 |
Using metric temporal logic to specify scheduling problems R Luo, RA Valenzano, Y Li, JC Beck, SA McIlraith Fifteenth International Conference on the Principles of Knowledge …, 2016 | 6 | 2016 |