关注
Yuhao Ding
Yuhao Ding
在 berkeley.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
A dual approach to constrained markov decision processes with entropy regularization
D Ying, Y Ding, J Lavaei
International Conference on Artificial Intelligence and Statistics, 1887-1909, 2022
332022
Provably efficient primal-dual reinforcement learning for CMDPs with non-stationary objectives and constraints
Y Ding, J Lavaei
AAAI Conference on Artificial Intelligence (AAAI), 2023
222023
Optimal input design for affine model discrimination with applications in intention-aware vehicles
Y Ding, F Harirchi, SZ Yong, E Jacobsen, N Ozay
2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS …, 2018
202018
Input design for nonlinear model discrimination via affine abstraction
K Singh, Y Ding, N Ozay, SZ Yong
IFAC-PapersOnLine 51 (16), 175-180, 2018
192018
On the Global Optimum Convergence of Momentum-based Policy Gradient
Y Ding, J Zhang, J Lavaei
International Conference on Artificial Intelligence and Statistics, 1910-1934, 2022
182022
Beyond exact gradients: Convergence of stochastic soft-max policy gradient methods with entropy regularization
Y Ding, J Zhang, J Lavaei
arXiv preprint arXiv:2110.10117, 2021
172021
Escaping spurious local minimum trajectories in online time-varying nonconvex optimization
Y Ding, J Lavaei, M Arcak
2021 American control conference (ACC), 2021
142021
On the Absence of Spurious Local Trajectories in Time-varying Nonconvex Optimization
S Fattahi, C Josz, Y Ding, RM Ghazi, J Lavaei, S Sojoudi
IEEE Transactions on Automatic Control, 2021
13*2021
A CMDP-within-online framework for Meta-Safe Reinforcement Learning
MJ Vanshaj Khattar, Yuhao Ding, Bilgehan Sel, Javad Lavaei
International Conference on Learning Representations (ICLR), 2023
9*2023
Time-variation in online nonconvex optimization enables escaping from spurious local minima
Y Ding, J Lavaei, M Arcak
IEEE Transactions on Automatic Control, 2021
92021
Policy-based Primal-Dual Methods for Convex Constrained Markov Decision Processes
D Ying, M Guo, Y Ding, J Lavaei
AAAI Conference on Artificial Intelligence (AAAI), 2023
82023
Scalable Primal-Dual Actor-Critic Method for Safe Multi-Agent RL with General Utilities
D Ying, Y Zhang, Y Ding, A Koppel, J Lavaei
37th Annual Conference on Neural Information Processing Systems (NeurIPS 2023), 2023
62023
Non-stationary Risk-sensitive Reinforcement Learning: Near-optimal Dynamic Regret, Adaptive Detection, and Separation Design
Y Ding, M Jin, J Lavaei
AAAI Conference on Artificial Intelligence (AAAI), 2023
62023
Learning-to-Learn to Guide Random Search: Derivative-Free Meta Blackbox Optimization on Manifold
B Sel, A Al-Tawaha, Y Ding, R Jia, B Ji, J Lavaei, M Jin
Learning for Dynamics & Control Conference (L4DC), 2023
32023
Balance reward and safety optimization for safe reinforcement learning: A perspective of gradient manipulation
S Gu, B Sel, Y Ding, L Wang, Q Lin, M Jin, A Knoll
Proceedings of the AAAI Conference on Artificial Intelligence 38 (19), 21099 …, 2024
22024
Tempo Adaption in Non-stationary Reinforcement Learning
H Lee, Y Ding, J Lee, M Jin, J Lavaei, S Sojoudi
37th Annual Conference on Neural Information Processing Systems (NeurIPS 2023), 2023
22023
Local Analysis of Entropy-Regularized Stochastic Soft-Max Policy Gradient Methods
Y Ding, J Zhang, J Lavaei
European Control Conference (ECC), 2023
22023
Aggressive local search for constrained optimal control problems with many local minima
Y Ding, H Feng, J Lavaei
arXiv preprint arXiv:1903.08634, 2019
22019
Scalable Multi-Agent Reinforcement Learning with General Utilities
D Ying, Y Ding, A Koppel, J Lavaei
American Control Conference, 2023
12023
Structured Projection-free Online Convex Optimization with Multi-point Bandit Feedback
Y Ding, J Lavaei
2021 IEEE conference on Decision and Control (CDC), 2021
12021
系统目前无法执行此操作,请稍后再试。
文章 1–20