Improving adversarial robustness via promoting ensemble diversity T Pang, K Xu, C Du, N Chen, J Zhu International Conference on Machine Learning, 4970-4979, 2019 | 457 | 2019 |
Composite quantization for approximate nearest neighbor search T Zhang, C Du, J Wang International Conference on Machine Learning, 838-846, 2014 | 256 | 2014 |
Towards robust detection of adversarial examples T Pang, C Du, Y Dong, J Zhu Advances in neural information processing systems 31, 2018 | 222 | 2018 |
Rethinking softmax cross-entropy loss for adversarial robustness T Pang, K Xu, Y Dong, C Du, N Chen, J Zhu arXiv preprint arXiv:1905.10626, 2019 | 185 | 2019 |
Better diffusion models further improve adversarial training Z Wang, T Pang, C Du, M Lin, W Liu, S Yan International Conference on Machine Learning, 36246-36263, 2023 | 128 | 2023 |
On evaluating adversarial robustness of large vision-language models Y Zhao, T Pang, C Du, X Yang, C Li, NMM Cheung, M Lin Advances in Neural Information Processing Systems 36, 2024 | 75 | 2024 |
Lorahub: Efficient cross-task generalization via dynamic lora composition C Huang, Q Liu, BY Lin, T Pang, C Du, M Lin arXiv preprint arXiv:2307.13269, 2023 | 69 | 2023 |
A recipe for watermarking diffusion models Y Zhao, T Pang, C Du, X Yang, NM Cheung, M Lin arXiv preprint arXiv:2303.10137, 2023 | 62 | 2023 |
Max-mahalanobis linear discriminant analysis networks T Pang, C Du, J Zhu International Conference on Machine Learning, 4016-4025, 2018 | 56 | 2018 |
Collaborative filtering with user-item co-autoregressive models C Du, C Li, Y Zheng, J Zhu, B Zhang Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018 | 36 | 2018 |
Robust deep learning via reverse cross-entropy training and thresholding test T Pang, C Du, J Zhu arXiv preprint arXiv:1706.00633 3, 2017 | 29 | 2017 |
Learning deep generative models with doubly stochastic gradient MCMC C Du, J Zhu, B Zhang IEEE transactions on neural networks and learning systems 29 (7), 3084-3096, 2017 | 25* | 2017 |
Efficient diffusion policies for offline reinforcement learning B Kang, X Ma, C Du, T Pang, S Yan Advances in Neural Information Processing Systems 36, 2024 | 21 | 2024 |
Bag of tricks for training data extraction from language models W Yu, T Pang, Q Liu, C Du, B Kang, Y Huang, M Lin, S Yan International Conference on Machine Learning, 40306-40320, 2023 | 21 | 2023 |
Inner product similarity search using compositional codes C Du, J Wang arXiv preprint arXiv:1406.4966, 2014 | 20 | 2014 |
Weak-to-strong jailbreaking on large language models X Zhao, X Yang, T Pang, C Du, L Li, YX Wang, WY Wang arXiv preprint arXiv:2401.17256, 2024 | 19 | 2024 |
Exploring incompatible knowledge transfer in few-shot image generation Y Zhao, C Du, M Abdollahzadeh, T Pang, M Lin, S Yan, NM Cheung Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023 | 17 | 2023 |
To relieve your headache of training an mrf, take advil C Li, C Du, K Xu, M Welling, J Zhu, B Zhang arXiv preprint arXiv:1901.08400, 2019 | 15* | 2019 |
Learning implicit generative models by teaching explicit ones C Du, K Xu, C Li, J Zhu, B Zhang arXiv preprint arXiv:1807.03870, 2018 | 15* | 2018 |
Exploration in online advertising systems with deep uncertainty-aware learning C Du, Z Gao, S Yuan, L Gao, Z Li, Y Zeng, X Zhu, J Xu, K Gai, KC Lee Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data …, 2021 | 14 | 2021 |