A Survey of Automatic Parameter Tuning Methods for Metaheuristics C Huang, Y Li, X Yao IEEE Transactions on Evolutionary Computation 24 (2), 201-216, 2020 | 315 | 2020 |
An overview of artificial intelligence ethics C Huang, Z Zhang, B Mao, X Yao IEEE Transactions on Artificial Intelligence 4 (4), 799-819, 2023 | 108 | 2023 |
Surrogate models in evolutionary single-objective optimization: A new taxonomy and experimental study H Tong, C Huang, LL Minku, X Yao Information Sciences 562, 414-437, 2021 | 63 | 2021 |
Uncertainty analysis of deep drawing using surrogate model based probabilistic method C Huang, B Radi, A El Hami The International Journal of Advanced Manufacturing Technology 86 (9-12 …, 2016 | 51 | 2016 |
Overview of Structural Reliability Analysis Methods — Part III: Global Reliability Methods BR ChangWu Huang, Abdelkhalak El Hami Uncertainties and Reliability of Multiphysical Systems 17 (1), 1-8, 2017 | 33* | 2017 |
Voronoi-based Efficient Surrogate-assisted Evolutionary Algorithm for Very Expensive Problems H Tong, C Huang, J Liu, X Yao 2019 IEEE Congress on Evolutionary Computation (CEC), 2019 | 21 | 2019 |
CMA evolution strategy assisted by kriging model and approximate ranking C Huang, B Radi, A El Hami, H Bai Applied Intelligence 48 (11), 4288-4304, 2018 | 19 | 2018 |
Automatic Parameter Tuning using Bayesian Optimization Method C Huang, B Yuan, Y Li, X Yao 2019 IEEE Congress on Evolutionary Computation (CEC), 2019 | 18 | 2019 |
Metamodel-based inverse method for parameter identification: elastic–plastic damage model C Huang, A El Hami, B Radi Engineering Optimization 49 (4), 633-653, 2017 | 18 | 2017 |
Estimation of probability distribution of long-term fatigue damage on wind turbine tower using residual neural network H Bai, L Shi, Y Aoues, C Huang, D Lemosse Mechanical Systems and Signal Processing 190, 110101, 2023 | 8 | 2023 |
Online algorithm configuration for differential evolution algorithm C Huang, H Bai, X Yao Applied Intelligence 52, 9193–9211, 2022 | 7 | 2022 |
Operator-adapted evolutionary large-scale multiobjective optimization for voltage transformer ratio error estimation C Huang, L Li, C He, R Cheng, X Yao International Conference on Evolutionary Multi-Criterion Optimization, 672-683, 2021 | 7 | 2021 |
Multi-objective feature attribution explanation for explainable machine learning Z Wang, C Huang, Y Li, X Yao ACM Transactions on Evolutionary Learning and Optimization 4 (1), 1-32, 2024 | 4 | 2024 |
Research on Fretting Fatigue Life of Interference Fit and Its Influencing Factors JLX ChangWu Huang, GuangXue Yang, NianJun Fu Applied Mechanics and Materials 251, 293-300, 2013 | 4 | 2013 |
Feature attribution explanation to detect harmful dataset shift Z Wang, C Huang, X Yao 2023 International Joint Conference on Neural Networks (IJCNN), 1-8, 2023 | 2 | 2023 |
Preventing undesirable behaviors of neural networks via evolutionary constrained learning C Huang, Z Zhang, B Mao, X Yao 2022 International Joint Conference on Neural Networks (IJCNN), 1-7, 2022 | 2 | 2022 |
Adaptive multiobjective evolutionary algorithm for large-scale transformer ratio error estimation C Huang, L Li, C He, R Cheng, X Yao Memetic Computing 14 (2), 237-251, 2022 | 2 | 2022 |
Kriging-assisted evolution strategy for optimization and application in material parameters identification C Huang Normandie Université, 2017 | 2 | 2017 |
Procedural fairness in machine learning Z Wang, C Huang, X Yao arXiv preprint arXiv:2404.01877, 2024 | 1 | 2024 |
An Explainable Feature Selection Approach for Fair Machine Learning Z Yang, Z Wang, C Huang, X Yao International Conference on Artificial Neural Networks, 75-86, 2023 | 1 | 2023 |