DiSMEC : Distributed Sparse Machines for Extreme Multi-label Classification R Babbar, B Schölkopf Proceedings of the Tenth ACM International Conference on Web Search and Data …, 2017 | 303 | 2017 |
Distributed inference acceleration with adaptive DNN partitioning and offloading T Mohammed, C Joe-Wong, R Babbar, M Di Francesco IEEE INFOCOM 2020-IEEE Conference on Computer Communications, 854-863, 2020 | 184 | 2020 |
Bonsai: diverse and shallow trees for extreme multi-label classification S Khandagale, H Xiao, R Babbar Machine Learning 109 (11), 2099-2119, 2020 | 156 | 2020 |
Data scarcity, robustness and extreme multi-label classification R Babbar, B Schölkopf Machine Learning 108 (8), 1329-1351, 2019 | 152 | 2019 |
On flat versus hierarchical classification in large-scale taxonomies R Babbar, I Partalas, E Gaussier, MR Amini 27th Annual Conference on Neural Information Processing Systems (NIPS 26 …, 2013 | 96 | 2013 |
Learning taxonomy adaptation in large-scale classification R Babbar, I Partalas, E Gaussier, MR Amini, C Amblard Journal of Machine Learning Research 17 (98), 1-37, 2016 | 40 | 2016 |
Clustering based approach to learning regular expressions over large alphabet for noisy unstructured text R Babbar, N Singh Proceedings of the fourth workshop on Analytics for noisy unstructured text …, 2010 | 40 | 2010 |
Extreme classification (dagstuhl seminar 18291) S Bengio, K Dembczynski, T Joachims, M Kloft, M Varma Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2019 | 36 | 2019 |
Convex Surrogates for Unbiased Loss Functions in Extreme Classification With Missing Labels M Qaraei, E Schultheis, P Gupta, R Babbar Proceedings of the Web Conference 2021, 3711-3720, 2021 | 32* | 2021 |
On Missing Labels, Long-tails and Propensities in Extreme Multi-label Classification E Schultheis, M Wydmuch, R Babbar, K Dembczynski Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and …, 2022 | 27 | 2022 |
On power law distributions in large-scale taxonomies R Babbar, C Metzig, I Partalas, E Gaussier, MR Amini ACM SIGKDD explorations newsletter 16 (1), 47-56, 2014 | 26 | 2014 |
CascadeXML: Rethinking Transformers for End-to-end Multi-resolution Training in Extreme Multi-label Classification S Kharbanda, A Banerjee, E Schultheis, R Babbar Advances in Neural Information Processing Systems 35 (NeurIPS 2022), 2022 | 23 | 2022 |
Adversarial extreme multi-label classification R Babbar, B Schölkopf arXiv preprint arXiv:1803.01570, 2018 | 22 | 2018 |
Prediction of glucose tolerance without an oral glucose tolerance test R Babbar, M Heni, A Peter, M Hrabě de Angelis, HU Häring, A Fritsche, ... Frontiers in endocrinology 9, 82, 2018 | 19 | 2018 |
Maximum-margin framework for training data synchronization in large-scale hierarchical classification R Babbar, I Partalas, E Gaussier, MR Amini Neural Information Processing: 20th International Conference, ICONIP 2013 …, 2013 | 16 | 2013 |
Speeding-up one-versus-all training for extreme classification via mean-separating initialization E Schultheis, R Babbar Machine Learning 111 (11), 3953-3976, 2022 | 15* | 2022 |
Explainable publication year prediction of eighteenth century texts with the BERT model I Rastas, YC Ryan, ILI Tiihonen, M Qaraei, L Repo, R Babbar, E Mäkelä, ... Proceedings of the 3rd Workshop on Computational Approaches to Historical …, 2022 | 13 | 2022 |
Efficient model selection for regularized classification by exploiting unlabeled data G Balikas, I Partalas, E Gaussier, R Babbar, MR Amini Advances in Intelligent Data Analysis XIV: 14th International Symposium, IDA …, 2015 | 12 | 2015 |
Inceptionxml: A lightweight framework with synchronized negative sampling for short text extreme classification S Kharbanda, A Banerjee, D Gupta, A Palrecha, R Babbar Proceedings of the 46th International ACM SIGIR Conference on Research and …, 2023 | 11* | 2023 |
TerseSVM : A Scalable Approach for Learning Compact Models in Large-scale Classification R Babbar, K Muandet, B Schölkopf SIAM International Conference on Data Mining, 234-242, 2016 | 10 | 2016 |