关注
Ryan Giordano
Ryan Giordano
在 mit.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Covariances, robustness, and variational Bayes
R Giordano, T Broderick, MI Jordan
Journal of machine learning research 19 (51), 1-49, 2018
1272018
A swiss army infinitesimal jackknife
R Giordano, W Stephenson, R Liu, M Jordan, T Broderick
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
1072019
Linear response methods for accurate covariance estimates from mean field variational Bayes
RJ Giordano, T Broderick, MI Jordan
Advances in neural information processing systems 28, 2015
1052015
An automatic finite-sample robustness metric: Can dropping a little data change conclusions
T Broderick, R Giordano, R Meager
arXiv preprint arXiv:2011.14999 16 (1), 2, 2020
64*2020
Cataloging the visible universe through Bayesian inference in Julia at petascale
J Regier, K Fischer, K Pamnany, A Noack, J Revels, M Lam, S Howard, ...
Journal of Parallel and Distributed Computing 127, 89-104, 2019
412019
The mind, the lab, and the field: three kinds of populations in scientific practice
RG Winther, R Giordano, MD Edge, R Nielsen
Studies in History and Philosophy of Science Part C: Studies in History and …, 2015
352015
A higher-order swiss army infinitesimal jackknife
R Giordano, MI Jordan, T Broderick
arXiv preprint arXiv:1907.12116, 2019
272019
Evaluating sensitivity to the stick-breaking prior in bayesian nonparametrics (with discussion)
R Giordano, R Liu, MI Jordan, T Broderick
Bayesian Analysis 18 (1), 287-366, 2023
152023
How good is your Laplace approximation of the Bayesian posterior? Finite-sample computable error bounds for a variety of useful divergences
MJ Kasprzak, R Giordano, T Broderick
arXiv preprint arXiv:2209.14992, 2022
122022
Learning an astronomical catalog of the visible universe through scalable Bayesian inference
J Regier, K Pamnany, R Giordano, R Thomas, D Schlegel, J McAuliffe
arXiv preprint arXiv:1611.03404, 2016
92016
Fast robustness quantification with variational Bayes
R Giordano, T Broderick, R Meager, J Huggins, M Jordan
arXiv preprint arXiv:1606.07153, 2016
92016
Return of the infinitesimal jackknife
R Giordano, W Stephenson, R Liu, MI Jordan, T Broderick
arXiv preprint arXiv:1806.00550, 2018
62018
Black Box Variational Inference with a Deterministic Objective: Faster, More Accurate, and Even More Black Box
R Giordano, M Ingram, T Broderick
Journal of Machine Learning Research 25 (18), 1-39, 2024
42024
Gaussian processes at the Helm (holtz): A more fluid model for ocean currents
R Berlinghieri, BL Trippe, DR Burt, R Giordano, K Srinivasan, ...
arXiv preprint arXiv:2302.10364, 2023
32023
Robust inference with variational bayes
R Giordano, T Broderick, M Jordan
arXiv preprint arXiv:1512.02578, 2015
32015
Covariance matrices and influence scores for mean field variational bayes
R Giordano, T Broderick
arXiv preprint arXiv:1502.07685, 2015
32015
On the Local Sensitivity of M-Estimation: Bayesian and Frequentist Applications
R Giordano
University of California, Berkeley, 2019
22019
The Bayesian Infinitesimal Jackknife for Variance
R Giordano, T Broderick
arXiv preprint arXiv:2305.06466, 2023
12023
Evaluating Sensitivity to the Stick Breaking Prior in Bayesian Nonparametrics
R Liu, R Giordano, MI Jordan, T Broderick
arXiv e-prints, arXiv: 1810.06587, 2018
12018
Measuring Cluster Stability for Bayesian Nonparametrics Using the Linear Bootstrap
R Giordano, R Liu, N Varoquaux, MI Jordan, T Broderick
arXiv preprint arXiv:1712.01435, 2017
12017
系统目前无法执行此操作,请稍后再试。
文章 1–20