关注
Andre Pilastri
Andre Pilastri
CCG/ZGDV - ICT Innovation Institute
在 ccg.pt 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
A comparison of AutoML tools for machine learning, deep learning and XGBoost
L Ferreira, A Pilastri, CM Martins, PM Pires, P Cortez
2021 International Joint Conference on Neural Networks (IJCNN), 1-8, 2021
1172021
Business analytics in Industry 4.0: A systematic review
AJ Silva, P Cortez, C Pereira, A Pilastri
Expert systems 38 (7), e12741, 2021
542021
Deep dense and convolutional autoencoders for machine acoustic anomaly detection
G Coelho, P Pereira, L Matos, A Ribeiro, EC Nunes, A Ferreira, P Cortez, ...
Artificial Intelligence Applications and Innovations: 17th IFIP WG 12.5 …, 2021
43*2021
Reconstruction algorithms in compressive sensing: An overview
AL Pilastri, JMRS Tavares
11th edition of the Doctoral Symposium in Informatics Engineering (DSIE-16), 2016
302016
Predicting the Tear Strength of Woven Fabrics via Automated Machine Learning: An Application of the CRISP-DM Methodology
PC Rui Ribeiro, André Pilastri, Carla Moura, Filipe Rodrigues, Rita Rocha
22th International Conference on Enterprise Information Systems -- ICEIS 2020, 2020
24*2020
Predicting physical properties of woven fabrics via automated machine learning and textile design and finishing features
R Ribeiro, A Pilastri, C Moura, F Rodrigues, R Rocha, J Morgado, ...
Artificial Intelligence Applications and Innovations: 16th IFIP WG 12.5 …, 2020
212020
Using deep autoencoders for in-vehicle audio anomaly detection
PJ Pereira, G Coelho, A Ribeiro, LM Matos, EC Nunes, A Ferreira, ...
Procedia Computer Science 192, 298-307, 2021
202021
Isolation forests and deep autoencoders for industrial screw tightening anomaly detection
D Ribeiro, LM Matos, G Moreira, A Pilastri, P Cortez
Computers 11 (4), 54, 2022
182022
Categorical Attribute traNsformation Environment (CANE): A python module for categorical to numeric data preprocessing
LM Matos, J Azevedo, A Matta, A Pilastri, P Cortez, R Mendes
Software Impacts 13, 100359, 2022
152022
An Automated and Distributed Machine Learning Framework for Telecommunications Risk Management
PC L Ferreira, A Pilastri, C Martins, P Santos
12th International Conference on Agents and Artificial Intelligence …, 2020
13*2020
Using supervised and one-class automated machine learning for predictive maintenance
L Ferreira, A Pilastri, F Romano, P Cortez
Applied Soft Computing 131, 109820, 2022
122022
A scalable and automated machine learning framework to support risk management
L Ferreira, A Pilastri, C Martins, P Santos, P Cortez
International Conference on Agents and Artificial Intelligence, 291-307, 2020
112020
A comparison of anomaly detection methods for industrial screw tightening
D Ribeiro, LM Matos, P Cortez, G Moreira, A Pilastri
Computational Science and Its Applications–ICCSA 2021: 21st International …, 2021
102021
Deep autoencoders for acoustic anomaly detection: experiments with working machine and in-vehicle audio
G Coelho, LM Matos, PJ Pereira, A Ferreira, A Pilastri, P Cortez
Neural Computing and Applications 34 (22), 19485-19499, 2022
92022
A comparison of machine learning methods for extremely unbalanced industrial quality data
PJ Pereira, A Pereira, P Cortez, A Pilastri
Progress in Artificial Intelligence: 20th EPIA Conference on Artificial …, 2021
92021
Prediction of maintenance equipment failures using automated machine learning
L Ferreira, A Pilastri, V Sousa, F Romano, P Cortez
International Conference on Intelligent Data Engineering and Automated …, 2021
82021
Learning kernels for support vector machines with polynomial powers of sigmoid
SEN Fernandes, AL Pilastri, LAM Pereira, RG Pires, JP Papa
2014 27th SIBGRAPI conference on graphics, patterns and images, 259-265, 2014
82014
Predicting yarn breaks in textile fabrics: A machine learning approach
J Azevedo, R Ribeiro, LM Matos, R Sousa, JP Silva, A Pilastri, P Cortez
Procedia Computer Science 207, 2301-2310, 2022
72022
Holistic framework to data-driven sustainability assessment
P Peças, L John, I Ribeiro, AJ Baptista, SM Pinto, R Dias, J Henriques, ...
Sustainability 15 (4), 3562, 2023
62023
A deep learning approach to prevent problematic movements of industrial workers based on inertial sensors
C Fernandes, LM Matos, D Folgado, ML Nunes, JR Pereira, A Pilastri, ...
2022 International Joint Conference on Neural Networks (IJCNN), 01-08, 2022
62022
系统目前无法执行此操作,请稍后再试。
文章 1–20