Soil organic carbon mapping using multispectral remote sensing data: Prediction ability of data with different spatial and spectral resolutions D Žížala, R Minařík, T Zádorová Remote Sensing 11 (24), 2947, 2019 | 98 | 2019 |
Use of a multispectral UAV photogrammetry for detection and tracking of forest disturbance dynamics R Minařík, J Langhammer The International Archives of the Photogrammetry, Remote Sensing and Spatial …, 2016 | 84 | 2016 |
Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic D Žížala, A Juřicová, T Zádorová, K Zelenková, R Minařík European Journal of Remote Sensing 52 (sup1), 108-122, 2019 | 66 | 2019 |
High-resolution agriculture soil property maps from digital soil mapping methods, Czech Republic D Žížala, R Minařík, J Skála, H Beitlerová, A Juřicová, JR Rojas, ... Catena 212, 106024, 2022 | 48 | 2022 |
Radiometric and atmospheric corrections of multispectral μMCA camera for UAV spectroscopy R Minařík, J Langhammer, J Hanuš Remote Sensing 11 (20), 2428, 2019 | 38 | 2019 |
Automatic tree crown extraction from uas multispectral imagery for the detection of bark beetle disturbance in mixed forests R Minařík, J Langhammer, T Lendzioch Remote Sensing 12 (24), 4081, 2020 | 36 | 2020 |
3-D reconstruction of an abandoned montane reservoir using UAV photogrammetry, aerial LiDAR and field survey J Langhammer, B Janský, J Kocum, R Minařík Applied geography 98, 9-21, 2018 | 34 | 2018 |
Mapping the groundwater level and soil moisture of a montane peat bog using uav monitoring and machine learning T Lendzioch, J Langhammer, L Vlček, R Minařík Remote Sensing 13 (5), 907, 2021 | 25 | 2021 |
Detection of bark beetle disturbance at tree level using UAS multispectral imagery and deep learning R Minařík, J Langhammer, T Lendzioch Remote Sensing 13 (23), 4768, 2021 | 23 | 2021 |
Rapid radiometric calibration of multiple camera array using in-situ data for uav multispectral photogrammetry R Minařík, J Langhammer The International Archives of the Photogrammetry, Remote Sensing and Spatial …, 2019 | 6 | 2019 |
Global mangrove soil organic carbon stocks dataset at 30 m resolution for the year 2020 based on spatiotemporal predictive machine learning TL Maxwell, T Hengl, LL Parente, R Minarik, TA Worthington, P Bunting, ... Data in Brief 50, 109621, 2023 | 1 | 2023 |
Time-series of Landsat-based spectral indices for continental Europe for 2000--2022 to support soil health monitoring X Tian, T Hengl, D Consoli, F Schneider, L Parente, M Şahin, R Minařík, ... | | 2024 |
Mapping dynamic soil properties at high spatial resolution using spatio-temporal Machine Learning: towards a consistent framework for monitoring soil health across borders T Hengl, R Minarik, L Parente, X Tian EGU24, 2024 | | 2024 |
Did the input data inflation via regression-based levelling of data from various analytical protocols affect the performance of geochemical predictive models? J Skála, D Žížala, R Minařík EGU General Assembly Conference Abstracts, EGU-11283, 2023 | | 2023 |
Open Soil Spectral Library (OSSL): Building reproducible soil calibration models through open development and community engagement JL Safanelli, T Hengl, LL Parente, R Minarik, DE Bloom, K Todd-Brown, ... bioRxiv, 2023.12. 16.572011, 2023 | | 2023 |
Detekce disturbance lesa pomocí UAV multispektrální fotogrammetrie R Minařík Univerzita Karlova, Přírodovědecká fakulta, 2022 | | 2022 |
Influence of parameterization strategy for parent material effects in predictive mapping of topsoil geochemistry J Skála, D Žížala, R Minařík EGU General Assembly Conference Abstracts, EGU22-9243, 2022 | | 2022 |
Soil sampling for variable-rate fertilization using spatial clustering R Minařík, D Žížala, J Skála, M Kraus, V Lukas EGU General Assembly Conference Abstracts, EGU22-8289, 2022 | | 2022 |
Automatic Tree Crown Feature Extraction from UAS Multispectral Imagery for the Detection of Bark Beetle Disturbance in an Urban Forest R Minařík, J Langhammer, T Lendzioch EGU General Assembly Conference Abstracts, EGU21-8297, 2021 | | 2021 |
Mapping the Groundwater Level and Soil Moisture of a Montane Peat Bog Using UAV Monitoring and Machine Learning. Remote Sens. 2021, 13, 907 T Lendzioch, J Langhammer, L Vlcek, R Minarík s Note: MDPI stays neutral with regard to jurisdictional claims in published …, 2021 | | 2021 |