Well-posedness and exponential equilibration of a volume-surface reaction–diffusion system with nonlinear boundary coupling K Fellner, E Latos, BQ Tang Annales de l'Institut Henri Poincaré C, Analyse non linéaire 35 (3), 643-673, 2018 | 36* | 2018 |
Global existence and asymptotic behavior of solutions to a nonlocal Fisher–KPP type problem S Bian, L Chen, EA Latos Nonlinear Analysis: Theory, Methods & Applications 149, 165-176, 2017 | 31 | 2017 |
Global classical solutions for mass-conserving,(super)-quadratic reaction-diffusion systems in three and higher space dimensions K Fellner, E Latos, T Suzuki arXiv preprint arXiv:1511.04349, 2015 | 23 | 2015 |
Global dynamics of a reaction–diffusion system with mass conservation E Latos, T Suzuki Journal of Mathematical Analysis and Applications 411 (1), 107-118, 2014 | 20 | 2014 |
Transient and asymptotic dynamics of a prey–predator system with diffusion E Latos, T Suzuki, Y Yamada Mathematical Methods in the Applied Sciences 35 (9), 1101-1109, 2012 | 17 | 2012 |
Wavefronts for a nonlinear nonlocal bistable reaction–diffusion equation in population dynamics J Li, E Latos, L Chen Journal of Differential Equations 263 (10), 6427-6455, 2017 | 16 | 2017 |
Nonlocal nonlinear reaction preventing blow-up in supercritical case of chemotaxis system S Bian, L Chen, EA Latos Nonlinear Analysis 176, 178-191, 2018 | 13 | 2018 |
Stability and spectral comparison of a reaction–diffusion system with mass conservation E Latos, Y Morita, T Suzuki Journal of Dynamics and Differential Equations 30, 823-844, 2018 | 12* | 2018 |
Global regularity and convergence to equilibrium of reaction–diffusion systems with nonlinear diffusion K Fellner, E Latos, BQ Tang Journal of Evolution Equations 20 (3), 957-1003, 2020 | 11 | 2020 |
Chemotaxis model with nonlocal nonlinear reaction in the whole space S Bian, L Chen, EA Latos Discrete Contin. Dyn. Syst 38 (10), 5067-5083, 2018 | 11 | 2018 |
Existence and blow-up of solutions for a non-local filtration and porous medium problem EA Latos, DE Tzanetis Proceedings of the Edinburgh Mathematical Society 53 (1), 195-209, 2010 | 11 | 2010 |
Grow-up of critical solutions for a non-local porous medium problem with Ohmic heating source EA Latos, DE Tzanetis Nonlinear Differential Equations and Applications NoDEA 17 (2), 137-151, 2010 | 6 | 2010 |
Mass conservative reaction–diffusion systems describing cell polarity E Latos, T Suzuki Mathematical Methods in the Applied Sciences 44 (7), 5974-5988, 2021 | 3 | 2021 |
On a class of reaction-diffusion equations with aggregation L Chen, L Desvillettes, E Latos Advanced Nonlinear Studies 21 (1), 119-133, 2021 | 3 | 2021 |
Existence and blow-up of solutions for a Semilinear Filtration problem EA Latos, DE Tzanetis Electron. J. Diff. Equ 2013 (178), 1-20, 2013 | 3 | 2013 |
Nonlocal reaction preventing blow-up in the supercritical case of chemotaxis EA Latos arXiv preprint arXiv:2011.10764, 2020 | 2 | 2020 |
Chemotaxis with quadratic dissipation and logistic source E Latos, T Suzuki Adv. Math. Sci. Appl 25, 207-227, 2016 | 2 | 2016 |
Diffusion-driven blow-up for a non-local fisher-kpp type model NI Kavallaris, EA Latos arXiv preprint arXiv:1905.05495, 2019 | 1 | 2019 |
On the finite time blow-up for filtration problems with nonlinear reaction K Fellner, E Latos, G Pisante Applied Mathematics Letters 42, 47-52, 2015 | 1 | 2015 |
Quasilinear reaction diffusion systems with mass dissipation E Latos, T Suzuki arXiv preprint arXiv:2103.02736, 2021 | | 2021 |