Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases M Steger, F Tonelli, G Ito, P Davies, M Trost, M Vetter, S Wachter, ... elife 5, e12813, 2016 | 885 | 2016 |
A single subunit, Dis3, is essentially responsible for yeast exosome core activity A Dziembowski, E Lorentzen, E Conti, B Séraphin Nature structural & molecular biology 14 (1), 15-22, 2007 | 496 | 2007 |
The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA F Bono, J Ebert, E Lorentzen, E Conti Cell 126 (4), 713-725, 2006 | 480 | 2006 |
Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis M Steger, F Diez, HS Dhekne, P Lis, RS Nirujogi, O Karayel, F Tonelli, ... elife 6, e31012, 2017 | 390 | 2017 |
Molecular basis of tubulin transport within the cilium by IFT74 and IFT81 S Bhogaraju, L Cajanek, C Fort, T Blisnick, K Weber, M Taschner, ... Science 341 (6149), 1009-1012, 2013 | 369 | 2013 |
The intraflagellar transport machinery M Taschner, E Lorentzen Cold Spring Harbor perspectives in biology 8 (10), a028092, 2016 | 353 | 2016 |
The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation F Bonneau, J Basquin, J Ebert, E Lorentzen, E Conti Cell 139 (3), 547-559, 2009 | 287 | 2009 |
The archaeal exosome core is a hexameric ring structure with three catalytic subunits E Lorentzen, P Walter, S Fribourg, E Evguenieva-Hackenberg, G Klug, ... Nature structural & molecular biology 12 (7), 575-581, 2005 | 234 | 2005 |
Architecture and function of IFT complex proteins in ciliogenesis M Taschner, S Bhogaraju, E Lorentzen Differentiation 83 (2), S12-S22, 2012 | 232 | 2012 |
Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family E Lorentzen, J Basquin, R Tomecki, A Dziembowski, E Conti Molecular cell 29 (6), 717-728, 2008 | 211 | 2008 |
Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin‐binding IFT‐B2 complex M Taschner, K Weber, A Mourão, M Vetter, M Awasthi, M Stiegler, ... The EMBO journal 35 (7), 773-790, 2016 | 195 | 2016 |
Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery JL Wingfield, KF Lechtreck, E Lorentzen Essays in biochemistry 62 (6), 753-763, 2018 | 144 | 2018 |
RNA channelling by the archaeal exosome E Lorentzen, A Dziembowski, D Lindner, B Seraphin, E Conti EMBO reports 8 (5), 470-476, 2007 | 130 | 2007 |
Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly M Taschner, F Kotsis, P Braeuer, EW Kuehn, E Lorentzen Journal of Cell Biology 207 (2), 269-282, 2014 | 123 | 2014 |
Structural basis of 3′ end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core E Lorentzen, E Conti Molecular cell 20 (3), 473-481, 2005 | 122 | 2005 |
Intraflagellar transport complex structure and cargo interactions S Bhogaraju, BD Engel, E Lorentzen Cilia 2, 1-9, 2013 | 118 | 2013 |
Crystal structure of the intraflagellar transport complex 25/27 S Bhogaraju, M Taschner, M Morawetz, C Basquin, E Lorentzen The EMBO journal 30 (10), 1907-1918, 2011 | 116 | 2011 |
Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization AA Bizet, A Becker-Heck, R Ryan, K Weber, E Filhol, P Krug, J Halbritter, ... Nature communications 6 (1), 8666, 2015 | 104 | 2015 |
RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus V Portnoy, E Evguenieva‐Hackenberg, F Klein, P Walter, E Lorentzen, ... EMBO reports 6 (12), 1188-1193, 2005 | 97 | 2005 |
Biochemical mapping of interactions within the intraflagellar transport (IFT) B core complex: IFT52 binds directly to four other IFT-B subunits M Taschner, S Bhogaraju, M Vetter, M Morawetz, E Lorentzen Journal of Biological Chemistry 286 (30), 26344-26352, 2011 | 94 | 2011 |