Smiles-bert: large scale unsupervised pre-training for molecular property prediction S Wang, Y Guo, Y Wang, H Sun, J Huang Proceedings of the 10th ACM international conference on bioinformatics …, 2019 | 366 | 2019 |
Exploring robustness of unsupervised domain adaptation in semantic segmentation J Yang, C Li, W An, H Ma, Y Guo, Y Rong, P Zhao, J Huang Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021 | 40 | 2021 |
Self-supervised pre-training for protein embeddings using tertiary structures Y Guo, J Wu, H Ma, J Huang Proceedings of the AAAI conference on artificial intelligence 36 (6), 6801-6809, 2022 | 33 | 2022 |
Bagging msa learning: Enhancing low-quality pssm with deep learning for accurate protein structure property prediction Y Guo, J Wu, H Ma, S Wang, J Huang Proc. of the 24th International Conference on Research in Computational …, 2020 | 22 | 2020 |
MoDNA: motif-oriented pre-training for DNA language model W An, Y Guo, Y Bian, H Ma, J Yang, C Li, J Huang Proceedings of the 13th ACM international conference on bioinformatics …, 2022 | 13 | 2022 |
EPTool: a new enhancing PSSM tool for protein secondary structure prediction Y Guo, J Wu, H Ma, S Wang, J Huang Journal of Computational Biology 28 (4), 362-364, 2021 | 13 | 2021 |
Robust self-training strategy for various molecular biology prediction tasks H Ma, F Jiang, Y Rong, Y Guo, J Huang Proceedings of the 13th ACM International Conference on Bioinformatics …, 2022 | 8 | 2022 |
Improving molecular property prediction on limited data with deep multi-label learning H Ma, C Yan, Y Guo, S Wang, Y Wang, H Sun, J Huang 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM …, 2020 | 8 | 2020 |
Protein ensemble learning with atrous spatial pyramid networks for secondary structure prediction Y Guo, J Wu, H Ma, S Wang, J Huang 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM …, 2020 | 8 | 2020 |
Deep ensemble learning with atrous spatial pyramid networks for protein secondary structure prediction Y Guo, J Wu, H Ma, S Wang, J Huang Biomolecules 12 (6), 774, 2022 | 6 | 2022 |
Comprehensive study on enhancing low-quality position-specific scoring matrix with deep learning for accurate protein structure property prediction: Using bagging multiple … Y Guo, J Wu, H Ma, S Wang, J Huang Journal of Computational Biology 28 (4), 346-361, 2021 | 6 | 2021 |
Segment Any Cell: A SAM-based Auto-prompting Fine-tuning Framework for Nuclei Segmentation S Na, Y Guo, F Jiang, H Ma, J Huang arXiv preprint arXiv:2401.13220, 2024 | 5 | 2024 |
Gradient-norm based attentive loss for molecular property prediction H Ma, Y Rong, B Liu, Y Guo, C Yan, J Huang 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM …, 2021 | 5 | 2021 |
Weightaln: Weighted homologous alignment for protein structure property prediction Y Guo, J Wu, H Ma, J Yang, X Zhu, J Huang 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM …, 2020 | 4 | 2020 |
PathM3: A Multimodal Multi-Task Multiple Instance Learning Framework for Whole Slide Image Classification and Captioning Q Zhou, W Zhong, Y Guo, M Xiao, H Ma, J Huang arXiv preprint arXiv:2403.08967, 2024 | 1 | 2024 |
Advancing DNA Language Models through Motif-Oriented Pre-Training with MoDNA W An, Y Guo, Y Bian, H Ma, J Yang, C Li, J Huang BioMedInformatics 4 (2), 1556-1571, 2024 | | 2024 |
GTE: a graph learning framework for prediction of T-cell receptors and epitopes binding specificity F Jiang, Y Guo, H Ma, S Na, W Zhong, Y Han, T Wang, J Huang Briefings in Bioinformatics 25 (4), 2024 | | 2024 |
Toward Robust Self-Training Paradigm for Molecular Prediction Tasks H Ma, F Jiang, Y Rong, Y Guo, J Huang Journal of Computational Biology 31 (3), 213-228, 2024 | | 2024 |
DEEP LEARNING FOR PROTEIN PROPERTY AND STRUCTURE PREDICTION Y Guo | | 2022 |
An Artificial Intelligence Model for Profiling the Landscape of Antigen-binding Affinities of Massive BCR Sequencing Data B Song, K Wang, S Na, J Yao, FJ Fattah, MS von Itzstein, DM Yang, J Liu, ... bioRxiv, 0 | | |