关注
Sebastian Lamm
Sebastian Lamm
在 kit.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Finding near-optimal independent sets at scale
S Lamm, P Sanders, C Schulz, D Strash, RF Werneck
2016 Proceedings of the eighteenth workshop on algorithm engineering and …, 2016
1122016
Communication-free massively distributed graph generation
D Funke, S Lamm, U Meyer, M Penschuck, P Sanders, C Schulz, D Strash, ...
Journal of Parallel and Distributed Computing 131, 200-217, 2019
792019
Thrill: High-performance algorithmic distributed batch data processing with C++
T Bingmann, M Axtmann, E Jöbstl, S Lamm, HC Nguyen, A Noe, S Schlag, ...
2016 IEEE International Conference on Big Data (Big Data), 172-183, 2016
722016
Exactly solving the maximum weight independent set problem on large real-world graphs
S Lamm, C Schulz, D Strash, R Williger, H Zhang
2019 proceedings of the twenty-first workshop on algorithm engineering and …, 2019
602019
WeGotYouCovered: The Winning Solver from the PACE 2019 Challenge, Vertex Cover Track∗
D Hespe, S Lamm, C Schulz, D Strash
2020 proceedings of the SIAM workshop on combinatorial scientific computing …, 2020
58*2020
Accelerating local search for the maximum independent set problem
J Dahlum, S Lamm, P Sanders, C Schulz, D Strash, RF Werneck
Experimental Algorithms: 15th International Symposium, SEA 2016, St …, 2016
452016
Efficient Parallel Random Sampling—Vectorized, Cache-Efficient, and Online
P Sanders, S Lamm, L Hübschle-Schneider, E Schrade, C Dachsbacher
ACM Transactions on Mathematical Software (TOMS) 44 (3), 29, 2018
392018
Graph partitioning for independent sets
S Lamm, P Sanders, C Schulz
International Symposium on Experimental Algorithms, 68-81, 2015
232015
Recent Advances in Scalable Network Generation
M Penschuck, U Brandes, M Hamann, S Lamm, U Meyer, I Safro, ...
Massive Graph Analytics, 333-376, 2022
202022
Engineering kernelization for maximum cut
D Ferizovic, D Hespe, S Lamm, M Mnich, C Schulz, D Strash
2020 Proceedings of the Twenty-Second Workshop on Algorithm Engineering and …, 2020
202020
Recent Advances in Practical Data Reduction.
FN Abu-Khzam, S Lamm, M Mnich, A Noe, C Schulz, D Strash
Algorithms for Big Data, 97-133, 2022
152022
Boosting Data Reduction for the Maximum Weight Independent Set Problem Using Increasing Transformations∗
A Gellner, S Lamm, C Schulz, D Strash, B Zaválnij
2021 Proceedings of the Workshop on Algorithm Engineering and Experiments …, 2021
152021
Finding near-optimal weight independent sets at scale
E Großmann, S Lamm, C Schulz, D Strash
Proceedings of the Genetic and Evolutionary Computation Conference, 293-302, 2023
92023
Recent advances in practical data reduction
F Abu-Khzam, S Lamm, M Mnich, A Noe, C Schulz, D Strash
arXiv preprint arXiv:2012.12594, 2020
72020
Targeted Branching for the Maximum Independent Set Problem
D Hespe, S Lamm, C Schorr
arXiv preprint arXiv:2102.01540, 2021
42021
Communication-efficient Massively Distributed Connected Components
S Lamm, P Sanders
2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS …, 2022
32022
Scalable Graph Algorithms using Practically Efficient Data Reductions
S Lamm
Karlsruhe Institute of Technology, 2022
12022
Algorithmen II
P Sanders, T Bingmann, S Lamm, D Hespe
系统目前无法执行此操作,请稍后再试。
文章 1–18