Progressive growing of GANs for improved quality, stability, and variation T Karras, T Aila, S Laine, J Lehtinen International Conference on Learning Representations (ICLR), 2018 | 8197 | 2018 |
Analyzing and improving the image quality of StyleGAN T Karras, S Laine, M Aittala, J Hellsten, J Lehtinen, T Aila Proc. Computer Vision and Pattern Recognition (CVPR), 2020 | 6096 | 2020 |
Training generative adversarial networks with limited data T Karras, M Aittala, J Hellsten, S Laine, J Lehtinen, T Aila Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020 | 1862 | 2020 |
Noise2Noise: Learning image restoration without clean data J Lehtinen, J Munkberg, J Hasselgren, S Laine, T Karras, M Aittala, T Aila International Conference on Machine Learning (ICML), 2018 | 1775 | 2018 |
Alias-free generative adversarial networks T Karras, M Aittala, S Laine, E Härkönen, J Hellsten, J Lehtinen, T Aila Advances in neural information processing systems 34, 852-863, 2021 | 1446 | 2021 |
GANSpace: Discovering Interpretable GAN Controls E Härkönen, A Hertzmann, J Lehtinen, S Paris Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020 | 888 | 2020 |
Few-shot unsupervised image-to-image translation MY Liu, X Huang, A Mallya, T Karras, T Aila, J Lehtinen, J Kautz International Conference on Computer Vision (ICCV) 2019, 2019 | 827 | 2019 |
Improved precision and recall metric for assessing generative models T Kynkäänniemi, T Karras, S Laine, J Lehtinen, T Aila Advances in Neural Information Processing Systems 32 (NeurIPS 2019), 2019 | 654 | 2019 |
Differentiable Monte Carlo Ray Tracing through Edge Sampling TM Li, M Aittala, F Durand, J Lehtinen ACM Transactions on Graphics (Proc. SIGGRAPH Asia 2018) 37 (6), Article 222, 2018 | 509 | 2018 |
Audio-driven facial animation by joint end-to-end learning of pose and emotion T Karras, T Aila, S Laine, A Herva, J Lehtinen ACM Transactions on Graphics (ToG) 36 (4), 1-12, 2017 | 435 | 2017 |
Progressive growing of gans for improved quality, stability, and variation. arXiv 2017 T Karras, T Aila, S Laine, J Lehtinen arXiv preprint arXiv:1710.10196, 1-26, 2018 | 426 | 2018 |
Learning to predict 3D objects with an interpolation-based differentiable renderer W Chen, H Ling, J Gao, E Smith, J Lehtinen, A Jacobson, S Fidler Advances in Neural Information Processing Systems 32 (NeurIPS 2019), 9605-9616, 2019 | 388 | 2019 |
High-quality self-supervised deep image denoising S Laine, T Karras, J Lehtinen, T Aila Advances in Neural Information Processing Systems 32 (NeurIPS 2019), 2019 | 339 | 2019 |
Modular primitives for high-performance differentiable rendering S Laine, J Hellsten, T Karras, Y Seol, J Lehtinen, T Aila ACM Transactions on Graphics (ToG) 39 (6), 1-14, 2020 | 321 | 2020 |
Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering M Zwicker, W Jarosz, J Lehtinen, B Moon, R Ramamoorthi, F Rousselle, ... Computer Graphics Forum 34 (2), 667-681, 2015 | 213 | 2015 |
Two-shot SVBRDF capture for stationary materials M Aittala, T Weyrich, J Lehtinen ACM Transactions on Graphics 34 (4), 110, 2015 | 180 | 2015 |
Incremental instant radiosity for real-time indirect illumination S Laine, H Saransaari, J Lehtinen, J Kontkanen, T Aila Proc. Eurographics Symposium on Rendering 2007, 4-8, 2007 | 180 | 2007 |
Reflectance modeling by neural texture synthesis M Aittala, T Aila, J Lehtinen ACM Transactions on Graphics (ToG) 35 (4), 1-13, 2016 | 162 | 2016 |
The Role of ImageNet Classes in Fréchet Inception Distance T Kynkäänniemi, T Karras, M Aittala, T Aila, J Lehtinen International Conference on Learning Representations (ICLR), 2022 | 149 | 2022 |
Practical SVBRDF capture in the frequency domain. M Aittala, T Weyrich, J Lehtinen ACM Trans. Graph. 32 (4), 110:1-110:12, 2013 | 142 | 2013 |