关注
Ruiyuan Kang
Ruiyuan Kang
其他姓名Kang Ruiyuan
AI Scientist Bayanat.AI
在 bayanat.ai 的电子邮件经过验证
标题
引用次数
引用次数
年份
Emission quantification via passive infrared optical gas imaging: A review
R Kang, P Liatsis, DC Kyritsis
Energies 15 (9), 3304, 2022
212022
齿轮传动对转桨扇发动机总体性能建模
康瑞元, 陈玉春, 蔡飞超, 黄兴, 陈凤萍
推进技术 40 (11), 2428-2435, 2019
82019
Self-validated physics-embedding network: A general framework for inverse modelling
R Kang, DC Kyritsis, P Liatsis
arXiv preprint arXiv:2210.06071, 2022
72022
Performance Modelling of Geared Contra-RotatingPropfan Engine
K Rui-yuan, C Yu-chun, CAI Fei-chao, H Xing, C Feng-ping
Journal of Propulsion Technology 40 (11), 2428, 2019
62019
Design of a triple combined cycle engine
Y Gao, Y Chen, L Jia, R Kang
21st AIAA International Space Planes and Hypersonics Technologies Conference …, 2017
32017
Physics-Driven ML-Based Modelling for Correcting Inverse Estimation
R Kang, T Mu, P Liatsis, DC Kyritsis
NeurIPS 2023, 2023
22023
Intelligence against complexity: Machine learning for nonuniform temperature-field measurements through laser absorption
R Kang, DC Kyritsis, P Liatsis
Plos one 17 (12), e0278885, 2022
22022
Performance Calculation and Integrated Mission Assessment of High Speed Turbojet-Scramjet Combined Engine
K Rui-yuan, C Yu-chun, GAO Yuan
2018 9th International Conference on Mechanical and Aerospace Engineering …, 2018
22018
Flame-state monitoring based on very low number of visible or infrared images via few-shot learning
R Kang, P Liatsis, DC Kyritsis
arXiv preprint arXiv:2210.07845, 2022
12022
Physics-Driven AI Correction in Laser Absorption Sensing Quantification
R Kang, P Liatsis, M Geng, Q Yang
arXiv preprint arXiv:2408.10714, 2024
2024
EEE, Remediating the failure of machine learning models via a network-based optimization patch
R Kang, D Kyritsis, P Liatsis
arXiv preprint arXiv:2304.11321, 2023
2023
Utilizing domain knowledge to enhance the performance of deep learning model on quantifying composition ratio from visual images of flames
R Kang, P Liatsis, DC Kyritsis
2023
Spatially-resolved Thermometry from Line-of-Sight Emission Spectroscopy via Machine Learning
R Kang, DC Kyritsis, P Liatsis
arXiv preprint arXiv:2212.07836, 2022
2022
Quantifying Line-of-Sight Profile Nonuniformity Effect on Laser Absorption Spectroscopy Temperature Measurement via Data Analysis
K Ruiyuan, P Liatsis, DC Kyritsis
Fluids Engineering Division Summer Meeting 85833, V001T02A006, 2022
2022
Emission Quantification via Passive Infrared Optical Gas Imaging: A Review. Energies 2022, 15, 3304
R Kang, P Liatsis, DC Kyritsis
s Note: MDPI stays neutral with regard to jurisdictional claims in published …, 2022
2022
Realizing Flame State Monitoring with Very Few Visual or Infrared Images via Few-Shot Learning.
R Kang, P Liatsis, DC Kyritsis
CoRR, 2022
2022
Research of a Triple Combined Cycle Engine Design
Y Gao, Y Chen, L Jia, R Kang
2017
A Data-Driven Method for Spatially-Resolved Thermometry from Line-of-Sight Emission Spectroscopy
R Kang, DC Kyritsis, P Liatsis
Available at SSRN 4310971, 0
系统目前无法执行此操作,请稍后再试。
文章 1–18