Local convergence analysis of the Gauss–Newton method under a majorant condition OP Ferreira, MLN Gonçalves, PR Oliveira Journal of Complexity 27 (1), 111-125, 2011 | 61 | 2011 |
Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems MLN Goncalves, JG Melo, RDC Monteiro arXiv preprint arXiv:1702.01850, 2017 | 58 | 2017 |
On the extension of the Hager–Zhang conjugate gradient method for vector optimization MLN Gonçalves, LF Prudente Computational Optimization and Applications 76 (3), 889-916, 2020 | 39 | 2020 |
Convergence of the Gauss--Newton method for convex composite optimization under a majorant condition OP Ferreira, MLN Gonçalves, PR Oliveira SIAM Journal on Optimization 23 (3), 1757-1783, 2013 | 39 | 2013 |
A Newton conditional gradient method for constrained nonlinear systems MLN Gonçalves, JG Melo Journal of Computational and Applied Mathematics 311, 473-483, 2017 | 30 | 2017 |
Improved pointwise iteration-complexity of a regularized ADMM and of a regularized non-Euclidean HPE framework MLN Gonçalves, JG Melo, RDC Monteiro SIAM Journal on Optimization 27 (1), 379-407, 2017 | 30 | 2017 |
Local convergence analysis of inexact Newton-like methods under majorant condition OP Ferreira, MLN Gonçalves Computational Optimization and Applications 48 (1), 1-21, 2011 | 27 | 2011 |
Local convergence analysis of inexact Gauss–Newton like methods under majorant condition OP Ferreira, MLN Gonçalves, PR Oliveira Journal of Computational and Applied Mathematics 236 (9), 2487-2498, 2012 | 26 | 2012 |
Globally convergent Newton-type methods for multiobjective optimization MLN Gonçalves, FS Lima, LF Prudente Computational Optimization and Applications 83 (2), 403-434, 2022 | 23 | 2022 |
An inexact Newton-like conditional gradient method for constrained nonlinear systems MLN Gonçalves, FR Oliveira Applied Numerical Mathematics 132, 22-34, 2018 | 21 | 2018 |
Convergence of the Gauss–Newton method for a special class of systems of equations under a majorant condition MLN Gonçalves, PR Oliveira Optimization 64 (3), 577-594, 2015 | 19 | 2015 |
Extending the ergodic convergence rate of the proximal ADMM MLN Gonçalves, JG Melo, RDC Monteiro arXiv preprint arXiv:1611.02903, 2016 | 17 | 2016 |
Local convergence of the Gauss–Newton method for injective-overdetermined systems of equations under a majorant condition MLN Gonçalves Computers & Mathematics with Applications 66 (4), 490-499, 2013 | 17 | 2013 |
Iteration-complexity analysis of a generalized alternating direction method of multipliers VA Adona, MLN Gonçalves, JG Melo Journal of Global Optimization 73, 331-348, 2019 | 16 | 2019 |
A study of Liu-Storey conjugate gradient methods for vector optimization MLN Gonçalves, FS Lima, LF Prudente Applied Mathematics and Computation 425, 127099, 2022 | 15 | 2022 |
Pointwise and ergodic convergence rates of a variable metric proximal alternating direction method of multipliers MLN Gonçalves, MM Alves, JG Melo Journal of Optimization Theory and Applications 177, 448-478, 2018 | 15 | 2018 |
A cubic regularization of Newton’s method with finite difference Hessian approximations GN Grapiglia, MLN Gonçalves, GN Silva Numerical Algorithms, 1-24, 2022 | 10 | 2022 |
An inexact projected LM type algorithm for solving convex constrained nonlinear equations DS Gonçalves, MLN Gonçalves, FR Oliveira Journal of Computational and Applied Mathematics 391, 113421, 2021 | 10 | 2021 |
An inexact proximal generalized alternating direction method of multipliers VA Adona, MLN Gonçalves, JG Melo Computational Optimization and Applications 76, 621-647, 2020 | 10 | 2020 |
Inexact Gauss-Newton like methods for injective-overdetermined systems of equations under a majorant condition MLN Gonçalves Numerical Algorithms 72 (2), 377-392, 2016 | 9 | 2016 |