关注
Rodrigo Toro Icarte
标题
引用次数
引用次数
年份
Using reward machines for high-level task specification and decomposition in reinforcement learning
R Toro Icarte, T Klassen, R Valenzano, S McIlraith
International Conference on Machine Learning, 2112-2121, 2018
325*2018
LTL and Beyond: Formal Languages for Reward Function Specification in Reinforcement Learning
A Camacho, R Toro Icarte, TQ Klassen, R Valenzano, SA McIlraith
Proceedings of the 28th International Joint Conference on Artificial …, 2019
2512019
Reward Machines: Exploiting Reward Function Structure in Reinforcement Learning
R Toro Icarte, TQ Klassen, R Valenzano, SA McIlraith
arXiv preprint arXiv:2010.03950, 2020
202*2020
Learning Reward Machines for Partially Observable Reinforcement Learning
R Toro Icarte, E Waldie, T Klassen, R Valenzano, M Castro, S McIlraith
Advances in Neural Information Processing Systems, 15497-15508, 2019
1492019
Teaching multiple tasks to an RL agent using LTL
R Toro Icarte, TQ Klassen, R Valenzano, SA McIlraith
Proceedings of the 17th International Conference on Autonomous Agents and …, 2018
1462018
Symbolic Plans as High-Level Instructions for Reinforcement Learning
L Illanes, X Yan, R Toro Icarte, SA McIlraith
Proceedings of the International Conference on Automated Planning and …, 2020
1182020
LTL2Action: Generalizing LTL Instructions for Multi-Task RL
P Vaezipoor, A Li, R Toro Icarte, S McIlraith
arXiv preprint arXiv:2102.06858, 2021
742021
Advice-based exploration in model-based reinforcement learning
R Toro Icarte, TQ Klassen, RA Valenzano, SA McIlraith
Canadian Conference on Artificial Intelligence, 72-83, 2018
302018
Training Binarized Neural Networks using MIP and CP
R Toro Icarte, L Illanes, MP Castro, AA Cire, SA McIlraith, JC Beck
Proceedings of the 25th International Conference on Principles and Practice …, 2019
292019
How a general-purpose commonsense ontology can improve performance of learning-based image retrieval
R Toro Icarte, JA Baier, C Ruz, A Soto
arXiv preprint arXiv:1705.08844, 2017
292017
Interpretable Sequence Classification via Discrete Optimization
M Shvo, AC Li, R Toro Icarte, SA McIlraith
arXiv preprint arXiv:2010.02819, 2020
192020
Be considerate: Avoiding negative side effects in reinforcement learning
P Alizadeh Alamdari, TQ Klassen, R Toro Icarte, SA McIlraith
Proceedings of the 21st International Conference on Autonomous Agents and …, 2022
172022
Symbolic Planning and Model-Free Reinforcement Learning: Training Taskable Agents
L Illanes, X Yan, R Toro Icarte, SA McIlraith
Proceedings of the 4th Multi-disciplinary Conference on Reinforcement …, 2019
142019
Solving task scheduling problems in dew computing via deep reinforcement learning
P Sanabria, TF Tapia, R Toro Icarte, A Neyem
Applied Sciences 12 (14), 7137, 2022
102022
Noisy symbolic abstractions for deep RL: A case study with reward machines
AC Li, Z Chen, P Vaezipoor, TQ Klassen, RT Icarte, SA McIlraith
arXiv preprint arXiv:2211.10902, 2022
92022
The act of remembering: a study in partially observable reinforcement learning
R Toro Icarte, R Valenzano, TQ Klassen, P Christoffersen, A Farahmand, ...
arXiv preprint arXiv:2010.01753, 2020
82020
AppBuddy: Learning to Accomplish Tasks in Mobile Apps via Reinforcement Learning.
M Shvo, Z Hu, RT Icarte, I Mohomed, AD Jepson, SA McIlraith
Canadian AI, 2021
72021
Using Advice in Model-Based Reinforcement Learning
R Toro Icarte, TQ Klassen, R Valenzano, SA McIlraith
The 3rd Multidisciplinary Conference on Reinforcement Learning and Decision …, 2017
7*2017
Reward Machines
RAT Icarte
University of Toronto (Canada), 2022
62022
Searching for Markovian Subproblems to Address Partially Observable Reinforcement Learning
R Toro Icarte, E Waldie, TQ Klassen, R Valenzano, MP Castro, ...
Proceedings of the 4th Multi-disciplinary Conference on Reinforcement …, 2019
6*2019
系统目前无法执行此操作,请稍后再试。
文章 1–20