Improving Fairness in Graph Neural Networks via Mitigating Sensitive Attribute Leakage Y Wang, Y Zhao, Y Dong, H Chen, J Li, T Derr Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and …, 2022 | 97 | 2022 |
Knowledge graph prompting for multi-document question answering Y Wang, N Lipka, RA Rossi, A Siu, R Zhang, T Derr AAAI 2024, 2024 | 87 | 2024 |
Tree Decomposed Graph Neural Network Y Wang, T Derr ACM International Conference on Information and Knowledge Management (CIKM), 2021 | 82 | 2021 |
Collaboration-Aware Graph Convolutional Network for Recommender Systems Y Wang, Y Zhao, Y Zhang, T Derr Proceedings of the ACM Web Conference 2023, 91-101, 2023 | 65* | 2023 |
Imbalanced Graph Classification via Graph-of-Graph Neural Networks Y Wang, Y Zhao, N Shah, T Derr 31st ACM International Conference on Information and Knowledge Management, 2021 | 57 | 2021 |
On structural explanation of bias in graph neural networks Y Dong, S Wang, Y Wang, T Derr, J Li Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and …, 2022 | 35 | 2022 |
Graph neural networks: Self-supervised learning Y Wang, W Jin, T Derr Graph Neural Networks: Foundations, Frontiers, and Applications, 391-420, 2022 | 32 | 2022 |
ChemicalX: A Deep Learning Library for Drug Pair Scoring B Rozemberczki, CT Hoyt, A Gogleva, P Grabowski, K Karis, A Lamov, ... Proceedings of 28th ACM SIGKDD International Conference on Knowledge …, 2022 | 27 | 2022 |
Fairness and diversity in recommender systems: a survey Y Zhao, Y Wang, Y Liu, X Cheng, CC Aggarwal, T Derr ACM Transactions on Intelligent Systems and Technology, 2023 | 22 | 2023 |
Interpretable Chirality-Aware Graph Neural Network for Quantitative Structure Activity Relationship Modeling in Drug Discovery Y Liu, Y Wang, OT Vu, R Moretti, B Bodenheimer, J Meiler, T Derr AAAI 2023, 2022 | 22 | 2022 |
Distance-wise prototypical graph neural network in node imbalance classification Y Wang, C Aggarwal, T Derr arXiv preprint arXiv:2110.12035, 2021 | 22 | 2021 |
Fairness and Explainability: Bridging the Gap Towards Fair Model Explanations Y Zhao, Y Wang, T Derr AAAI 2023, 2022 | 21 | 2022 |
Fairness-aware graph neural networks: A survey A Chen, RA Rossi, N Park, P Trivedi, Y Wang, T Yu, S Kim, F Dernoncourt, ... ACM Transactions on Knowledge Discovery from Data 18 (6), 1-23, 2024 | 15 | 2024 |
Fair graph representation learning with imbalanced and biased data Y Wang Proceedings of the Fifteenth ACM International Conference on Web Search and …, 2022 | 13 | 2022 |
Generating synthetic systems of interdependent critical infrastructure networks Y Wang, JZ Yu, H Baroud IEEE Systems Journal 16 (2), 3191-3202, 2021 | 12 | 2021 |
A survey on privacy in graph neural networks: Attacks, preservation, and applications Y Zhang, Y Zhao, Z Li, X Cheng, Y Wang, O Kotevska, SY Philip, T Derr IEEE Transactions on Knowledge and Data Engineering, 2024 | 10 | 2024 |
Degree-related bias in link prediction Y Wang, T Derr 2022 IEEE International Conference on Data Mining Workshops (ICDMW), 757-758, 2022 | 9 | 2022 |
Knowledge Graph-based Session Recommendation with Session-Adaptive Propagation Y Wang, A Javari, J Balaji, W Shalaby, T Derr, X Cui Companion Proceedings of the ACM on Web Conference 2024, 264-273, 2024 | 8* | 2024 |
Can One Embedding Fit All? A Multi-Interest Learning Paradigm Towards Improving User Interest Diversity Fairness Y Zhao, M Xu, H Chen, Y Chen, Y Cai, R Islam, Y Wang, T Derr The Web Conference 24 Research Track, 2024 | 7 | 2024 |
A Topological Perspective on Demystifying GNN-Based Link Prediction Performance Y Wang, T Zhao, Y Zhao, Y Liu, X Cheng, N Shah, T Derr International Conference on Learning Representations (ICLR) 2024, 2023 | 6 | 2023 |