Density ratio estimation in machine learning M Sugiyama, T Suzuki, T Kanamori Cambridge University Press, 2012 | 671 | 2012 |
A least-squares approach to direct importance estimation T Kanamori, S Hido, M Sugiyama The Journal of Machine Learning Research 10, 1391-1445, 2009 | 596 | 2009 |
Statistical outlier detection using direct density ratio estimation S Hido, Y Tsuboi, H Kashima, M Sugiyama, T Kanamori Knowledge and information systems 26, 309-336, 2011 | 239 | 2011 |
Information geometry of U-Boost and Bregman divergence N Murata, T Takenouchi, T Kanamori, S Eguchi Neural Computation 16 (7), 1437-1481, 2004 | 235 | 2004 |
Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation M Sugiyama, T Suzuki, T Kanamori Annals of the Institute of Statistical Mathematics 64, 1009-1044, 2012 | 212 | 2012 |
Approximating mutual information by maximum likelihood density ratio estimation T Suzuki, M Sugiyama, J Sese, T Kanamori New challenges for feature selection in data mining and knowledge discovery …, 2008 | 164 | 2008 |
Mutual information estimation reveals global associations between stimuli and biological processes T Suzuki, M Sugiyama, T Kanamori, J Sese BMC bioinformatics 10, 1-12, 2009 | 153 | 2009 |
Relative density-ratio estimation for robust distribution comparison M Yamada, T Suzuki, T Kanamori, H Hachiya, M Sugiyama Neural computation 25 (5), 1324-1370, 2013 | 143 | 2013 |
Statistical analysis of kernel-based least-squares density-ratio estimation T Kanamori, T Suzuki, M Sugiyama Machine Learning 86, 335-367, 2012 | 120 | 2012 |
Relative density-ratio estimation for robust distribution comparison M Yamada, T Suzuki, T Kanamori, H Hachiya, M Sugiyama Advances in neural information processing systems 24, 2011 | 117 | 2011 |
Efficient direct density ratio estimation for non-stationarity adaptation and outlier detection T Kanamori, S Hido, M Sugiyama Advances in neural information processing systems 21, 2008 | 102 | 2008 |
Least-squares conditional density estimation M Sugiyama, I Takeuchi, T Suzuki, T Kanamori, H Hachiya, D Okanohara IEICE Transactions on Information and Systems 93 (3), 583-594, 2010 | 93 | 2010 |
Density-difference estimation M Sugiyama, T Kanamori, T Suzuki, MC Du Plessis, S Liu, I Takeuchi Neural Computation 25 (10), 2734-2775, 2013 | 90 | 2013 |
Inlier-based outlier detection via direct density ratio estimation S Hido, Y Tsuboi, H Kashima, M Sugiyama, T Kanamori 2008 Eighth IEEE international conference on data mining, 223-232, 2008 | 87 | 2008 |
Nonparametric conditional density estimation using piecewise-linear solution path of kernel quantile regression I Takeuchi, K Nomura, T Kanamori Neural Computation 21 (2), 533-559, 2009 | 75 | 2009 |
Active learning algorithm using the maximum weighted log-likelihood estimator T Kanamori, H Shimodaira Journal of statistical planning and inference 116 (1), 149-162, 2003 | 74 | 2003 |
Conditional density estimation via least-squares density ratio estimation M Sugiyama, I Takeuchi, T Suzuki, T Kanamori, H Hachiya, D Okanohara Proceedings of the Thirteenth International Conference on Artificial …, 2010 | 68 | 2010 |
A robust approach based on conditional value-at-risk measure to statistical learning problems A Takeda, T Kanamori European Journal of Operational Research 198 (1), 287-296, 2009 | 61 | 2009 |
Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search M Sugiyama, M Yamada, P Von Buenau, T Suzuki, T Kanamori, ... Neural Networks 24 (2), 183-198, 2011 | 59 | 2011 |
Least-squares two-sample test M Sugiyama, T Suzuki, Y Itoh, T Kanamori, M Kimura Neural networks 24 (7), 735-751, 2011 | 53 | 2011 |