On the robustness of backdoor-based watermarking in deep neural networks M Shafieinejad, N Lukas, J Wang, X Li, F Kerschbaum Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia …, 2021 | 113 | 2021 |
Sok: How robust is image classification deep neural network watermarking? N Lukas, E Jiang, X Li, F Kerschbaum 2022 IEEE Symposium on Security and Privacy (SP), 787-804, 2022 | 78 | 2022 |
Towards Robust Dataset Learning Y Wu, X Li, F Kerschbaum, H Huang, H Zhang arXiv preprint arXiv:2211.10752, 2022 | 9 | 2022 |
Sok: How robust is deep neural network image classification watermarking N Lukas, E Jiang, X Li, F Kerschbaum IEEE Symposium on Security and Privacy, 52-69, 2022 | 7 | 2022 |
Fast and Private Inference of Deep Neural Networks by Co-designing Activation Functions A Diaa, L Fenaux, T Humphries, M Dietz, F Ebrahimianghazani, ... arXiv preprint arXiv:2306.08538, 2023 | 3 | 2023 |
Recovery from non-decomposable distance oracles Z Hu, X Li, DP Woodruff, H Zhang, S Zhang IEEE Transactions on Information Theory, 2023 | 2 | 2023 |
Improved Model Poisoning Attacks and Defenses in Federated Learning with Clustering X Li University of Waterloo, 2022 | 2 | 2022 |
PEPSI: Practically Efficient Private Set Intersection in the Unbalanced Setting RA Mahdavi, N Lukas, F Ebrahimianghazani, T Humphries, B Kacsmar, ... arXiv preprint arXiv:2310.14565, 2023 | | 2023 |
Sok: How robust is image classification deep neural network watermarking?(extended version) N Lukas, E Jiang, X Li, F Kerschbaum arXiv preprint arXiv:2108.04974, 2021 | | 2021 |