关注
Gianluca Agresti
Gianluca Agresti
Sony R&D Center Europe Stuttgart Laboratory 1
在 sony.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Adversarial learning and self-teaching techniques for domain adaptation in semantic segmentation
U Michieli, M Biasetton, G Agresti, P Zanuttigh
IEEE Transactions on Intelligent Vehicles 5 (3), 508-518, 2020
632020
Unsupervised domain adaptation for tof data denoising with adversarial learning
G Agresti, H Schaefer, P Sartor, P Zanuttigh
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
512019
Unsupervised domain adaptation for mobile semantic segmentation based on cycle consistency and feature alignment
M Toldo, U Michieli, G Agresti, P Zanuttigh
Image and Vision Computing 95, 103889, 2020
482020
Unsupervised domain adaptation for semantic segmentation of urban scenes
M Biasetton, U Michieli, G Agresti, P Zanuttigh
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
472019
Deep learning for confidence information in stereo and tof data fusion
G Agresti, L Minto, G Marin, P Zanuttigh
Proceedings of the IEEE International Conference on Computer Vision …, 2017
452017
Deep learning for multi-path error removal in ToF sensors
G Agresti, P Zanuttigh
Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 0-0, 2018
372018
Confidence estimation for ToF and stereo sensors and its application to depth data fusion
M Poggi, G Agresti, F Tosi, P Zanuttigh, S Mattoccia
IEEE Sensors Journal 20 (3), 1411-1421, 2019
252019
Combination of spatially-modulated ToF and structured light for MPI-free depth estimation
G Agresti, P Zanuttigh
Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 0-0, 2018
252018
Material identification using RF sensors and convolutional neural networks
G Agresti, S Milani
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and …, 2019
202019
Deep learning for transient image reconstruction from ToF data
E Buratto, A Simonetto, G Agresti, H Schäfer, P Zanuttigh
Sensors 21 (6), 1962, 2021
192021
Stereo and ToF data fusion by learning from synthetic data
G Agresti, L Minto, G Marin, P Zanuttigh
Information Fusion 49, 161-173, 2019
152019
A multi-camera dataset for depth estimation in an indoor scenario
G Marin, G Agresti, L Minto, P Zanuttigh
Data in brief 27, 104619, 2019
132019
Unsupervised domain adaptation of deep networks for ToF depth refinement
G Agresti, H Schäfer, P Sartor, Y Incesu, P Zanuttigh
IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (12), 9195 …, 2021
72021
A low memory footprint quantized neural network for depth completion of very sparse time-of-flight depth maps
X Jiang, V Cambareri, G Agresti, CI Ugwu, A Simonetto, F Cardinaux, ...
Proceedings of the ieee/cvf conference on computer vision and pattern …, 2022
62022
Lightweight deep learning architecture for MPI correction and transient reconstruction
A Simonetto, G Agresti, P Zanuttigh, H Schäfer
IEEE Transactions on Computational Imaging 8, 721-732, 2022
42022
Apparatuses and methods for training a machine learning network for use with a time-of-flight camera
H Schäfer, E Buratto, G Agresti, P Zanuttigh
US Patent App. 17/110,330, 2021
22021
A rate control algorithm for video coding in augmented reality applications
S Milani, G Agresti, G Calvagno
2016 Picture Coding Symposium (PCS), 1-5, 2016
22016
NIGHT--Non-Line-of-Sight Imaging from Indirect Time of Flight Data
M Caligiuri, A Simonetto, G Agresti, P Zanuttigh
arXiv preprint arXiv:2403.19376, 2024
2024
Exploiting Multiple Priors for Neural 3D Indoor Reconstruction
F Lincetto, G Agresti, M Rossi, P Zanuttigh
arXiv preprint arXiv:2309.07021, 2023
2023
Time-of-flight simulation data training circuitry, time-of-flight simulation data training method, time-of-flight simulation data output method, time-of-flight simulation data …
G Agresti, H Schäfer, Y Incesu, P Sartor, P Zanuttigh
US Patent App. 17/527,191, 2022
2022
系统目前无法执行此操作,请稍后再试。
文章 1–20