Level-based analysis of genetic algorithms and other search processes D Corus, DC Dang, AV Eremeev, PK Lehre IEEE Transactions on Evolutionary Computation 22 (5), 707-719, 2017 | 128 | 2017 |
Standard steady state genetic algorithms can hillclimb faster than mutation-only evolutionary algorithms D Corus, PS Oliveto IEEE Transactions on Evolutionary Computation 22 (5), 720-732, 2017 | 119 | 2017 |
Level-based analysis of genetic algorithms and other search processes D Corus, DC Dang, AV Eremeev, PK Lehre International Conference on Parallel Problem Solving from Nature, 912-921, 2014 | 46 | 2014 |
Fast artificial immune systems D Corus, PS Oliveto, D Yazdani Parallel Problem Solving from Nature–PPSN XV: 15th International Conference …, 2018 | 37 | 2018 |
On the benefits of populations for the exploitation speed of standard steady-state genetic algorithms D Corus, PS Oliveto Proceedings of the Genetic and Evolutionary Computation Conference, 1452-1460, 2019 | 35 | 2019 |
When hypermutations and ageing enable artificial immune systems to outperform evolutionary algorithms D Corus, PS Oliveto, D Yazdani Theoretical Computer Science 832, 166-185, 2020 | 33 | 2020 |
Toward a unifying framework for evolutionary processes T Paixão, G Badkobeh, N Barton, D Çörüş, DC Dang, T Friedrich, ... Journal of Theoretical Biology 383, 28-43, 2015 | 32 | 2015 |
On the runtime analysis of the Opt-IA artificial immune system D Corus, PS Oliveto, D Yazdani Proceedings of the Genetic and Evolutionary Computation Conference, 83-90, 2017 | 31 | 2017 |
Artificial immune systems can find arbitrarily good approximations for the NP-hard number partitioning problem D Corus, PS Oliveto, D Yazdani Artificial Intelligence 274, 180-196, 2019 | 30 | 2019 |
On easiest functions for mutation operators in bio-inspired optimisation D Corus, J He, T Jansen, PS Oliveto, D Sudholt, C Zarges Algorithmica 78, 714-740, 2017 | 22 | 2017 |
A parameterised complexity analysis of bi-level optimisation with evolutionary algorithms D Corus, PK Lehre, F Neumann, M Pourhassan Evolutionary computation 24 (1), 183-203, 2016 | 20 | 2016 |
On steady-state evolutionary algorithms and selective pressure: Why inverse rank-based allocation of reproductive trials is best D Corus, A Lissovoi, PS Oliveto, C Witt ACM Transactions on Evolutionary Learning and Optimization 1 (1), 1-38, 2021 | 16 | 2021 |
Fast immune system-inspired hypermutation operators for combinatorial optimization D Corus, PS Oliveto, D Yazdani IEEE Transactions on Evolutionary Computation 25 (5), 956-970, 2021 | 16 | 2021 |
Artificial immune systems can find arbitrarily good approximations for the NP-hard partition problem D Corus, PS Oliveto, D Yazdani International Conference on Parallel Problem Solving from Nature, 16-28, 2018 | 13 | 2018 |
On easiest functions for somatic contiguous hypermutations and standard bit mutations D Corus, J He, T Jansen, PS Oliveto, D Sudholt, C Zarges Proceedings of the 2015 Annual Conference on Genetic and Evolutionary …, 2015 | 11 | 2015 |
The generalized minimum spanning tree problem: a parameterized complexity analysis of bi-level optimisation D Corus, PK Lehre, F Neumann Proceedings of the 15th annual conference on Genetic and evolutionary …, 2013 | 11 | 2013 |
Automatic adaptation of hypermutation rates for multimodal optimisation D Corus, PS Oliveto, D Yazdani Proceedings of the 16th ACM/SIGEVO Conference on Foundations of Genetic …, 2021 | 10 | 2021 |
On inversely proportional hypermutations with mutation potential D Corus, PS Oliveto, D Yazdani Proceedings of the Genetic and Evolutionary Computation Conference, 215-223, 2019 | 7 | 2019 |
A unified model of evolutionary processes T Paixão, G Badkobeh, N Barton, D Corus, DC Dang, T Friedrich, ... Journal of Theoretical Biology 383, 28-43, 2015 | 5 | 2015 |
Theory driven design of efficient genetic algorithms for a classical graph problem D Corus, PK Lehre Recent Developments in Metaheuristics, 125-140, 2018 | 4 | 2018 |