A “transversal” fundamental theorem for semi-dispersing billiards A Krámli, N Simányi, D Szász Communications in mathematical physics 129 (3), 535-560, 1990 | 131 | 1990 |
Limit laws and recurrence for the planar Lorentz process with infinite horizon D Szász, T Varjú Journal of Statistical Physics 129 (1), 59-80, 2007 | 126 | 2007 |
Hard ball systems and the Lorentz gas D Szász, LA Bunimovich (No Title), 2000 | 120 | 2000 |
Decay of correlations for Lorentz gases and hard balls LA Bunimovich, D Burago, N Chernov, EGD Cohen, CP Dettmann, ... Hard ball systems and the Lorentz gas, 89-120, 2000 | 103 | 2000 |
Boltzmann's ergodic hypothesis, a conjecture for centuries? D Szász Studia Scientiarum Mathematicarum Hungarica 31 (1), 299-322, 1996 | 88 | 1996 |
Random walks with internal degrees of freedom: I. Local limit theorems A Krámli, D Szász Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 63 (1), 85-95, 1983 | 87* | 1983 |
Local limit theorem for the Lorentz process and its recurrence in the plane D Szász, T Varjú Ergodic Theory and Dynamical Systems 24 (1), 257-278, 2004 | 85 | 2004 |
The K-property of three billiard balls A Krámli, N Simanyi, D Szasz Annals of Mathematics, 37-72, 1991 | 81 | 1991 |
Recurrence properties of planar Lorentz process D Dolgopyat, D Szász, T Varjú | 77 | 2008 |
Hard ball systems are completely hyperbolic N Simányi, D Szász Annals of Mathematics, 35-96, 1999 | 66 | 1999 |
TheK-property of four billiard balls A Krámli, N Simanyi, D Szasz Communications in mathematical physics 144 (1), 107-148, 1992 | 63 | 1992 |
Ergodic properties of semi-dispersing billiards. I. Two cylindric scatterers in the 3D torus A Krámli, N Simányi, D Szász Nonlinearity 2 (2), 311, 1989 | 56 | 1989 |
Geometry of multi-dimensional dispersing billiards P Bálint, N Chernov, D Szász, IP Tóth Asterisque 286, 119-150, 2003 | 55 | 2003 |
Limit theorems for the distributions of the sums of a random number of random variables D Szász The Annals of Mathematical Statistics, 1902-1913, 1972 | 52 | 1972 |
Boltzmann’s ergodic hypothesis, a conjecture for centuries? LA Bunimovich, D Burago, N Chernov, EGD Cohen, CP Dettmann, ... Hard ball systems and the Lorentz gas, 421-446, 2000 | 49 | 2000 |
Multi-dimensional semi-dispersing billiards: singularities and the fundamental theorem P Bálint, N Chernov, D Szász, IP Tóth Annales Henri Poincaré 3, 451-482, 2002 | 45 | 2002 |
Persistent random walks in a one-dimensional random environment D Szász, B Tóth Journal of Statistical Physics 37 (1), 27-38, 1984 | 45 | 1984 |
On theK-property of some planar hyperbolic billiards D Szász Communications in mathematical physics 145, 595-604, 1992 | 41 | 1992 |
Ergodicity of classical billiard balls D Szász Physica A: Statistical Mechanics and its Applications 194 (1-4), 86-92, 1993 | 36 | 1993 |
Towards a unified dynamical theory of the Brownian particle in an ideal gas D Szász, B Tóth Communications in mathematical physics 111, 41-62, 1987 | 34 | 1987 |