关注
Szász Domokos
Szász Domokos
Professor of Mathematics
在 math.bme.hu 的电子邮件经过验证
标题
引用次数
引用次数
年份
A “transversal” fundamental theorem for semi-dispersing billiards
A Krámli, N Simányi, D Szász
Communications in mathematical physics 129 (3), 535-560, 1990
1311990
Limit laws and recurrence for the planar Lorentz process with infinite horizon
D Szász, T Varjú
Journal of Statistical Physics 129 (1), 59-80, 2007
1262007
Hard ball systems and the Lorentz gas
D Szász, LA Bunimovich
(No Title), 2000
1202000
Decay of correlations for Lorentz gases and hard balls
LA Bunimovich, D Burago, N Chernov, EGD Cohen, CP Dettmann, ...
Hard ball systems and the Lorentz gas, 89-120, 2000
1032000
Boltzmann's ergodic hypothesis, a conjecture for centuries?
D Szász
Studia Scientiarum Mathematicarum Hungarica 31 (1), 299-322, 1996
881996
Random walks with internal degrees of freedom: I. Local limit theorems
A Krámli, D Szász
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 63 (1), 85-95, 1983
87*1983
Local limit theorem for the Lorentz process and its recurrence in the plane
D Szász, T Varjú
Ergodic Theory and Dynamical Systems 24 (1), 257-278, 2004
852004
The K-property of three billiard balls
A Krámli, N Simanyi, D Szasz
Annals of Mathematics, 37-72, 1991
811991
Recurrence properties of planar Lorentz process
D Dolgopyat, D Szász, T Varjú
772008
Hard ball systems are completely hyperbolic
N Simányi, D Szász
Annals of Mathematics, 35-96, 1999
661999
TheK-property of four billiard balls
A Krámli, N Simanyi, D Szasz
Communications in mathematical physics 144 (1), 107-148, 1992
631992
Ergodic properties of semi-dispersing billiards. I. Two cylindric scatterers in the 3D torus
A Krámli, N Simányi, D Szász
Nonlinearity 2 (2), 311, 1989
561989
Geometry of multi-dimensional dispersing billiards
P Bálint, N Chernov, D Szász, IP Tóth
Asterisque 286, 119-150, 2003
552003
Limit theorems for the distributions of the sums of a random number of random variables
D Szász
The Annals of Mathematical Statistics, 1902-1913, 1972
521972
Boltzmann’s ergodic hypothesis, a conjecture for centuries?
LA Bunimovich, D Burago, N Chernov, EGD Cohen, CP Dettmann, ...
Hard ball systems and the Lorentz gas, 421-446, 2000
492000
Multi-dimensional semi-dispersing billiards: singularities and the fundamental theorem
P Bálint, N Chernov, D Szász, IP Tóth
Annales Henri Poincaré 3, 451-482, 2002
452002
Persistent random walks in a one-dimensional random environment
D Szász, B Tóth
Journal of Statistical Physics 37 (1), 27-38, 1984
451984
On theK-property of some planar hyperbolic billiards
D Szász
Communications in mathematical physics 145, 595-604, 1992
411992
Ergodicity of classical billiard balls
D Szász
Physica A: Statistical Mechanics and its Applications 194 (1-4), 86-92, 1993
361993
Towards a unified dynamical theory of the Brownian particle in an ideal gas
D Szász, B Tóth
Communications in mathematical physics 111, 41-62, 1987
341987
系统目前无法执行此操作,请稍后再试。
文章 1–20