Learning Disentangled Representations with Semi-Supervised Deep Generative Models S N, B Paige, JW van de Meent, A Desmaison, N Goodman, P Kohli, ... Advances in Neural Information Processing Systems 30, 2017 | 397* | 2017 |
A new approach to probabilistic programming inference F Wood, JW Meent, V Mansinghka Artificial intelligence and statistics, 1024-1032, 2014 | 397 | 2014 |
An introduction to probabilistic programming JW van de Meent, B Paige, H Yang, F Wood arXiv preprint arXiv:1809.10756, 2018 | 197 | 2018 |
Universal and wide shear zones in granular bulk flow D Fenistein, JW van de Meent, M van Hecke Physical review letters 92 (9), 094301, 2004 | 190 | 2004 |
Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments JW van de Meent, JE Bronson, CH Wiggins, RL Gonzalez Biophysical journal 106 (6), 1327-1337, 2014 | 185 | 2014 |
Structured disentangled representations B Esmaeili, H Wu, S Jain, A Bozkurt, N Siddharth, B Paige, DH Brooks, ... The 22nd International Conference on Artificial Intelligence and Statistics …, 2019 | 164* | 2019 |
A physical perspective on cytoplasmic streaming RE Goldstein, JW Van De Meent Interface focus 5 (4), 20150030, 2015 | 161 | 2015 |
Design and implementation of probabilistic programming language anglican D Tolpin, JW van de Meent, H Yang, F Wood Proceedings of the 28th Symposium on the Implementation and Application of …, 2016 | 143 | 2016 |
Microfluidics of cytoplasmic streaming and its implications for intracellular transport RE Goldstein, I Tuval, JW van de Meent Proceedings of the National Academy of Sciences 105 (10), 3663-3667, 2008 | 138 | 2008 |
Core precession and global modes in granular bulk flow D Fenistein, JW van de Meent, M van Hecke Physical review letters 96 (11), 118001, 2006 | 70 | 2006 |
Enhancing few-shot image classification with unlabelled examples P Bateni, J Barber, JW Van de Meent, F Wood Proceedings of the IEEE/CVF winter conference on applications of computer …, 2022 | 67 | 2022 |
Interoception as modeling, allostasis as control E Sennesh, J Theriault, D Brooks, JW van de Meent, LF Barrett, ... Biological Psychology 167, 108242, 2022 | 65 | 2022 |
Probabilistic programming in Anglican D Tolpin, JW van de Meent, F Wood Machine Learning and Knowledge Discovery in Databases: European Conference …, 2015 | 54 | 2015 |
Measurement of cytoplasmic streaming in single plant cells by magnetic resonance velocimetry JW van de Meent, AJ Sederman, LF Gladden, RE Goldstein Journal of Fluid Mechanics 642, 5-14, 2010 | 54 | 2010 |
Nature’s microfluidic transporter: rotational cytoplasmic streaming at high Péclet numbers JW van de Meent, I Tuval, RE Goldstein Physical review letters 101 (17), 178102, 2008 | 54 | 2008 |
Interacting particle markov chain monte carlo T Rainforth, C Naesseth, F Lindsten, B Paige, JW Vandemeent, A Doucet, ... International Conference on Machine Learning, 2616-2625, 2016 | 40 | 2016 |
Learning symmetric embeddings for equivariant world models JY Park, O Biza, L Zhao, JW van de Meent, R Walters arXiv preprint arXiv:2204.11371, 2022 | 37 | 2022 |
Learning disentangled representations of texts with application to biomedical abstracts S Jain, E Banner, JW van de Meent, IJ Marshall, BC Wallace Proceedings of the Conference on Empirical Methods in Natural Language …, 2018 | 34 | 2018 |
Bayesian optimization for probabilistic programs T Rainforth, TA Le, JW van de Meent, MA Osborne, F Wood Advances in Neural Information Processing Systems 29, 2016 | 34 | 2016 |
Hierarchically-coupled hidden Markov models for learning kinetic rates from single-molecule data JW Meent, J Bronson, F Wood, R Gonzalez Jr, C Wiggins International Conference on Machine Learning, 361-369, 2013 | 34 | 2013 |