关注
Andrew Rothstein
Andrew Rothstein
Graduate Student, Princeton University
在 princeton.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Avoiding fusion plasma tearing instability with deep reinforcement learning
J Seo, SK Kim, A Jalalvand, R Conlin, A Rothstein, J Abbate, K Erickson, ...
Nature 626 (8000), 746-751, 2024
242024
Multimodal prediction of tearing instabilities in a tokamak
J Seo, R Conlin, A Rothstein, SK Kim, J Abbate, A Jalalvand, E Kolemen
2023 International Joint Conference on Neural Networks (IJCNN), 1-8, 2023
92023
Comparison of machine learning systems trained to detect Alfvén eigenmodes using the CO2 interferometer on DIII-D
AV Garcia, A Jalalvand, P Steiner, A Rothstein, M Van Zeeland, ...
Nuclear Fusion 63 (12), 126039, 2023
42023
Alfvén eigenmode detection using Long-Short Term Memory Networks and CO2 Interferometer data on the DIII-D National Fusion Facility
AV Garcia, A Jalalvand, P Steiner, A Rothstein, M Van Zeeland, ...
2023 International Joint Conference on Neural Networks (IJCNN), 1-8, 2023
42023
Towards llms as operational copilots for fusion reactors
V Mehta, J Abbate, A Wang, A Rothstein, I Char, J Schneider, E Kolemen, ...
NeurIPS 2023 AI for Science Workshop, 2023
42023
Avoiding tokamak tearing instability with artificial intelligence
E Kolemen, J Seo, R Conlin, A Rothstein, SK Kim, J Abbate, K Erickson, ...
32023
DIII-D research to provide solutions for ITER and fusion energy
CT Holcomb, J Abbate, A Abe, A Abrams, P Adebayo-Ige, S Agabian, ...
Nuclear Fusion 64 (11), 112003, 2024
12024
Artificial Intelligence-assisted control of Alfvén Eigenmodes improves plasma stability in the DIII-D tokamak
A Garcia, A Jalalvand, A Rothstein, M Van Zeeland, X Du, D Liu, ...
Bulletin of the American Physical Society, 2024
2024
Preemptive tearing mode suppression using real-time ECH steering machine learning stability predictions on DIII-D
A Rothstein, H Farre, R Sonker, SK Kim, A Jalalvand, J Schneider, ...
Bulletin of the American Physical Society, 2024
2024
Design of a PID controller for the pedestal top electron density at KSTAR
M Kim, SK Kim, K Erickson, A Rothstein, R Shousha, SH Han, J Juhn, ...
Bulletin of the American Physical Society, 2024
2024
Machine learning control of DIII-D profiles using a linear profile predictor
HJ Farre Kaga, J Abbate, K Erickson, A Rothstein, E Kolemen
Bulletin of the American Physical Society, 2024
2024
Real-Time Machine-Learning Enabled Emission Front Control at DIII-D
N CHEN, A Jalalvand, SK Kim, F Scotti, E Kolemen, A Rothstein
Bulletin of the American Physical Society, 2024
2024
Advancements in 3D Edge Long-Pulse Tokamak Scenarios with Instability & Transport Control
D Orlov, N Logan, J Snipes, E Kolemen, C Paz-Soldan, Y Liu, H Frerichs, ...
Bulletin of the American Physical Society, 2024
2024
Initial testing of Alfvén eigenmode feedback control with machine-learning observers on DIII-D
A Rothstein, A Jalalvand, J Abbate, K Erickson, E Kolemen
Nuclear Fusion 64 (9), 096020, 2024
2024
Identification of Alfvén eigenmodes using recurrent neural networks, a labelled database and CO2 interferometer data on DIII-D
A Garcia, A Jalalvand, P Steiner, A Rothstein, M Van Zeeland, ...
APS Division of Plasma Physics Meeting Abstracts 2023, NP11. 023, 2023
2023
Tearing mode avoidance using reinforcement learning and classical delta prime stability analysis on DIII-D
A Rothstein, J Seo, R Shousha, A Jalalvand, S Kim, R Conlin, E Kolemen, ...
APS Division of Plasma Physics Meeting Abstracts 2023, UP11. 102, 2023
2023
Implementing Data-Driven Models for Real-Time Detection and Control of Alfvén Eigenmodes at DIII-D
A Jalalvand, A Rothstein, S Kim, K Erickson, A Garcia, M Austin, ...
APS Division of Plasma Physics Meeting Abstracts 2023, JO08. 015, 2023
2023
Multi-Diagnostic Classification of Alfvén Eigenmodes using Multimodal Machine Learning
A Rothstein, A Jalalvand, A Garcia, M Austin, W Heidbrink, E Kolemen
APS Division of Plasma Physics Meeting Abstracts 2022, PP11. 059, 2022
2022
New Neural Networks for Plasma Profile Prediction
A Rothstein, E Kolemen
APS Division of Plasma Physics Meeting Abstracts 2021, PP11. 145, 2021
2021
系统目前无法执行此操作,请稍后再试。
文章 1–19