Basic principles of virtual element methods L Beirão da Veiga, F Brezzi, A Cangiani, G Manzini, LD Marini, A Russo Mathematical Models and Methods in Applied Sciences 23 (01), 199-214, 2013 | 1446 | 2013 |
Isogeometric analysis: approximation, stability and error estimates for h-refined meshes Y Bazilevs, L Beirao da Veiga, JA Cottrell, TJR Hughes, G Sangalli Mathematical Models and Methods in Applied Sciences 16 (07), 1031-1090, 2006 | 957 | 2006 |
The hitchhiker's guide to the virtual element method L Beirão da Veiga, F Brezzi, LD Marini, A Russo Mathematical models and methods in applied sciences 24 (08), 1541-1573, 2014 | 709 | 2014 |
Virtual elements for linear elasticity problems LB Da Veiga, F Brezzi, LD Marini SIAM Journal on Numerical Analysis 51 (2), 794-812, 2013 | 587 | 2013 |
Isogeometric collocation methods F Auricchio, LB Da Veiga, TJR Hughes, A Reali, G Sangalli Mathematical Models and Methods in Applied Sciences 20 (11), 2075-2107, 2010 | 489 | 2010 |
Virtual element method for general second-order elliptic problems on polygonal meshes L Beirão da Veiga, F Brezzi, LD Marini, A Russo Mathematical Models and Methods in Applied Sciences 26 (04), 729-750, 2016 | 377 | 2016 |
The mimetic finite difference method for elliptic problems LB da Veiga, K Lipnikov, G Manzini Springer, 2014 | 377 | 2014 |
Mathematical analysis of variational isogeometric methods LB Da Veiga, A Buffa, G Sangalli, R Vázquez Acta Numerica 23, 157-287, 2014 | 337 | 2014 |
Divergence free virtual elements for the Stokes problem on polygonal meshes LB da Veiga, C Lovadina, G Vacca ESAIM: Mathematical Modelling and Numerical Analysis 51 (2), 509-535, 2017 | 320 | 2017 |
A fully “locking-free” isogeometric approach for plane linear elasticity problems: A stream function formulation F Auricchio, LB da Veiga, A Buffa, C Lovadina, A Reali, G Sangalli Computer methods in applied mechanics and engineering 197 (1-4), 160-172, 2007 | 307 | 2007 |
Stability analysis for the virtual element method L Beirão da Veiga, C Lovadina, A Russo Mathematical Models and Methods in Applied Sciences 27 (13), 2557-2594, 2017 | 298 | 2017 |
A virtual element method for elastic and inelastic problems on polytope meshes LB Da Veiga, C Lovadina, D Mora Computer methods in applied mechanics and engineering 295, 327-346, 2015 | 288 | 2015 |
Isogeometric collocation for elastostatics and explicit dynamics F Auricchio, LB Da Veiga, TJR Hughes, A Reali, G Sangalli Computer methods in applied mechanics and engineering 249, 2-14, 2012 | 265 | 2012 |
Some estimates for h–p–k-refinement in Isogeometric Analysis L Beirão da Veiga, A Buffa, J Rivas, G Sangalli Numerische Mathematik 118, 271-305, 2011 | 265 | 2011 |
A stream virtual element formulation of the Stokes problem on polygonal meshes PF Antonietti, LB Da Veiga, D Mora, M Verani SIAM Journal on Numerical Analysis 52 (1), 386-404, 2014 | 264 | 2014 |
A Virtual Element Method for the Cahn--Hilliard Equation with Polygonal Meshes PF Antonietti, LB Da Veiga, S Scacchi, M Verani SIAM Journal on Numerical Analysis 54 (1), 34-56, 2016 | 251 | 2016 |
Mixed virtual element methods for general second order elliptic problems on polygonal meshes L Beirão da Veiga, F Brezzi, LD Marini, A Russo ESAIM: Mathematical Modelling and Numerical Analysis 50 (3), 727-747, 2016 | 221 | 2016 |
Virtual elements for the Navier--Stokes problem on polygonal meshes LB Da Veiga, C Lovadina, G Vacca SIAM Journal on Numerical Analysis 56 (3), 1210-1242, 2018 | 217 | 2018 |
Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods LB da Veiga, C Lovadina, A Reali Computer methods in applied mechanics and engineering 241, 38-51, 2012 | 205 | 2012 |
Some basic formulations of the virtual element method (VEM) for finite deformations H Chi, LB Da Veiga, GH Paulino Computer Methods in Applied Mechanics and Engineering 318, 148-192, 2017 | 199 | 2017 |