关注
Junyoung Park
Junyoung Park
Qualcomm AI Research
在 qti.qualcomm.com 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Graph neural ordinary differential equations
M Poli, S Massaroli, J Park, A Yamashita, H Asama, J Park
Workshop on Deep Learning on Graphs: Methodologies and Applications (DLGMA’20), 2019
3902019
Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning
J Park, J Chun, SH Kim, Y Kim, J Park
International Journal of Production Research 59 (11), 3360-3377, 2021
1902021
Physics-induced graph neural network: An application to wind-farm power estimation
J Park, J Park
Energy 187, 115883, 2019
922019
Sym-nco: Leveraging symmetricity for neural combinatorial optimization
M Kim, J Park, J Park
Advances in Neural Information Processing Systems 35, 1936-1949, 2022
532022
ScheduleNet: Learn to solve multi-agent scheduling problems with reinforcement learning
J Park, S Bakhtiyar, J Park
arXiv preprint arXiv:2106.03051, 2021
382021
Wind field-based short-term turbine response forecasting by stacked dilated convolutional LSTMs
S Woo, J Park, J Park, L Manuel
IEEE Transactions on Sustainable Energy 11 (4), 2294-2304, 2019
312019
Predicting wind turbine power and load outputs by multi-task convolutional LSTM model
S Woo, J Park, J Park
2018 IEEE Power & Energy Society General Meeting (PESGM), 1-5, 2018
312018
Convergent graph solvers
J Park, J Choo, J Park
International Conference on Learning Representations (ICLR 2022), 2021
182021
Learning to CROSS exchange to solve min-max vehicle routing problems
M Kim, J Park, J Park
International Conference on Learning Representations (ICLR 2023), 2023
14*2023
Learn to Solve the Min-max Multiple Traveling Salesmen Problem with Reinforcement Learning
J Park, C Kwon, J Park
International Conference on Autonomous Agents and Multiagent Systems (AAMAS …, 2023
92023
RL4CO: an extensive reinforcement learning for combinatorial optimization benchmark
F Berto, C Hua, J Park, M Kim, H Kim, J Son, H Kim, J Kim, J Park
arXiv preprint arXiv:2306.17100, 2023
82023
Continuous-depth neural models for dynamic graph prediction
M Poli, S Massaroli, CM Rabideau, J Park, A Yamashita, H Asama, J Park
arXiv preprint arXiv:2106.11581, 2021
62021
A hypergraph convolutional neural network for molecular properties prediction using functional group
F Chen, J Park, J Park
arXiv preprint arXiv:2106.01028, 2021
52021
Dissecting Neural ODEs. arXiv 2020
S Massaroli, M Poli, J Park, A Yamashita, H Asama
arXiv preprint arXiv:2002.08071, 2002
52002
Meta-sysid: A meta-learning approach for simultaneous identification and prediction
J Park, F Berto, A Jamgochian, MJ Kochenderfer, J Park
arXiv preprint arXiv:2206.00694, 2022
42022
Learning context-aware adaptive solvers to accelerate quadratic programming
H Jung, J Park, J Park
arXiv preprint arXiv:2211.12443, 2022
32022
Recursive Speculative Decoding: Accelerating LLM Inference via Sampling Without Replacement
W Jeon, M Gagrani, R Goel, J Park, M Lee, C Lott
arXiv preprint arXiv:2402.14160, 2024
22024
A Molecular Hyper-message Passing Network with Functional Group Information
F Chen, J Park, J Park
arXiv preprint arXiv:2106.01028, 2021
22021
Direct Alignment of Draft Model for Speculative Decoding with Chat-Fine-Tuned LLMs
R Goel, M Gagrani, W Jeon, J Park, M Lee, C Lott
arXiv preprint arXiv:2403.00858, 2024
12024
On Speculative Decoding for Multimodal Large Language Models
M Gagrani, R Goel, W Jeon, J Park, M Lee, C Lott
arXiv preprint arXiv:2404.08856, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–20