Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism S Miao, M Liu, P Li ICML 2022, 2022 | 163 | 2022 |
Interpretable Geometric Deep Learning via Learnable Randomness Injection S Miao, Y Luo, M Liu, P Li ICLR 2023, 2023 | 18 | 2023 |
High Pileup Particle Tracking with Object Condensation K Lieret, G DeZoort, D Chatterjee, J Park, S Miao, P Li CTD 2023, 2023 | 3 | 2023 |
What Can We Learn from State Space Models for Machine Learning on Graphs? Y Huang*, S Miao*, P Li arXiv preprint (*Equal contribution, listed in alphabetical order), 2024 | 2 | 2024 |
Locality-Sensitive Hashing-Based Efficient Point Transformer with Applications in High-Energy Physics S Miao, Z Lu, M Liu, J Duarte, P Li ICML 2024 (Oral), 2024 | 1 | 2024 |
Towards Understanding Sensitive and Decisive Patterns in Explainable AI: A Case Study of Model Interpretation in Geometric Deep Learning J Zhu, S Miao, R Ying, P Li arXiv preprint, 2024 | | 2024 |
GDL-DS: A Benchmark for Geometric Deep Learning under Distribution Shifts D Zou, S Liu, S Miao, V Fung, S Chang, P Li arXiv preprint, 2023 | | 2023 |