Hfq chaperone brings speed dating to bacterial sRNA A Santiago‐Frangos, SA Woodson Wiley Interdisciplinary Reviews: RNA 9 (4), e1475, 2018 | 164 | 2018 |
C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA A Santiago-Frangos, K Kavita, DJ Schu, S Gottesman, SA Woodson Proceedings of the National Academy of Sciences 113 (41), E6089-E6096, 2016 | 112 | 2016 |
Structure reveals a mechanism of CRISPR-RNA-guided nuclease recruitment and anti-CRISPR viral mimicry MCF Rollins, S Chowdhury, J Carter, SM Golden, HM Miettinen, ... Molecular cell 74 (1), 132-142. e5, 2019 | 98 | 2019 |
Proteins that chaperone RNA regulation SA Woodson, S Panja, A Santiago-Frangos Microbiology spectrum 6 (4), 10.1128/microbiolspec. rwr-0026-2018, 2018 | 83 | 2018 |
Intrinsic signal amplification by type III CRISPR-Cas systems provides a sequence-specific SARS-CoV-2 diagnostic A Santiago-Frangos, LN Hall, A Nemudraia, A Nemudryi, P Krishna, ... Cell Reports Medicine 2 (6), 2021 | 71* | 2021 |
Acidic C-terminal domains autoregulate the RNA chaperone Hfq A Santiago-Frangos, JR Jeliazkov, JJ Gray, SA Woodson Elife 6, e27049, 2017 | 65 | 2017 |
Acidic residues in the Hfq chaperone increase the selectivity of sRNA binding and annealing S Panja, A Santiago-Frangos, DJ Schu, S Gottesman, SA Woodson Journal of molecular biology 427 (22), 3491-3500, 2015 | 38 | 2015 |
AcrIF9 tethers non-sequence specific dsDNA to the CRISPR RNA-guided surveillance complex M Hirschi, WT Lu, A Santiago-Frangos, R Wilkinson, SM Golden, ... Nature Communications 11 (1), 2730, 2020 | 37 | 2020 |
Caulobacter crescentus Hfq structure reveals a conserved mechanism of RNA annealing regulation A Santiago-Frangos, KS Fröhlich, JR Jeliazkov, EM Małecka, G Marino, ... Proceedings of the National Academy of Sciences 116 (22), 10978-10987, 2019 | 22 | 2019 |
Distribution and phasing of sequence motifs that facilitate CRISPR adaptation A Santiago-Frangos, M Buyukyoruk, T Wiegand, P Krishna, B Wiedenheft Current Biology 31 (16), 3515-3524. e6, 2021 | 20 | 2021 |
CRISPR-Cas, Argonaute proteins and the emerging landscape of amplification-free diagnostics A Santiago-Frangos, A Nemudryi, A Nemudraia, T Wiegand, JE Nichols, ... Methods 205, 1-10, 2022 | 17 | 2022 |
Diversity of bacterial small RNAs drives competitive strategies for a mutual chaperone J Roca, A Santiago-Frangos, SA Woodson Nature Communications 13 (1), 2449, 2022 | 16 | 2022 |
Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic A Nemudraia, A Nemudryi, M Buyukyoruk, AM Scherffius, T Zahl, ... Nature Communications 13 (1), 7762, 2022 | 15 | 2022 |
Viral proteins activate PARIS-mediated tRNA degradation and viral tRNAs rescue infection N Burman, S Belukhina, F Depardieu, RA Wilkinson, M Skutel, ... bioRxiv, 2024 | 8 | 2024 |
Functional and phylogenetic diversity of Cas10 proteins T Wiegand, R Wilkinson, A Santiago-Frangos, M Lynes, R Hatzenpichler, ... The CRISPR Journal 6 (2), 152-162, 2023 | 5 | 2023 |
Cas9 slide‐and‐seek for phage defense and genome engineering A Santiago‐Frangos, T Wiegand, B Wiedenheft The EMBO Journal 38 (4), e101474, 2019 | 5 | 2019 |
Structure reveals why genome folding is necessary for site-specific integration of foreign DNA into CRISPR arrays A Santiago-Frangos, WS Henriques, T Wiegand, CC Gauvin, ... Nature Structural & Molecular Biology 30 (11), 1675-1685, 2023 | 3 | 2023 |
Characterization and genomic analysis of the Lyme disease spirochete bacteriophage ϕBB-1 DR Faith, M Kinnersley, DM Brooks, D Drecktrah, LS Hall, E Luo, ... Plos Pathogens 20 (4), e1012122, 2024 | 2 | 2024 |
Protein-mediated genome folding allosterically enhances site-specific integration of foreign DNA into CRISPRs A Santiago-Frangos, WS Henriques, T Wiegand, CC Gauvin, ... bioRxiv, 2023.05. 26.542337, 2023 | 2 | 2023 |
Quantitative analysis of RNA chaperone activity by native gel electrophoresis and fluorescence spectroscopy S Panja, EM Małecka, A Santiago-Frangos, SA Woodson RNA Chaperones: Methods and Protocols, 19-39, 2020 | 2 | 2020 |