On the ψ-Hilfer fractional derivative JVC Sousa, EC De Oliveira Communications in Nonlinear Science and Numerical Simulation 60, 72-91, 2018 | 696 | 2018 |
A review of definitions for fractional derivatives and integral EC Oliveira, JA Machado Mathematical Problems in Engineering 2014, 1-7, 2014 | 638 | 2014 |
A review of definitions of fractional derivatives and other operators GS Teodoro, JAT Machado, EC De Oliveira Journal of Computational Physics 388, 195-208, 2019 | 408 | 2019 |
The epidemiology of sepsis in Brazilian intensive care units (the Sepsis PREvalence Assessment Database, SPREAD): an observational study FR Machado, AB Cavalcanti, FA Bozza, EM Ferreira, FSA Carrara, ... The Lancet Infectious Diseases 17 (11), 1180-1189, 2017 | 391 | 2017 |
A new truncated -fractional derivative type unifying some fractional derivative types with classical properties J Sousa, EC de Oliveira arXiv preprint arXiv:1704.08187, 2017 | 302 | 2017 |
A Gronwall inequality and the Cauchy-type problem by means of -Hilfer operator J Sousa, EC de Oliveira arXiv preprint arXiv:1709.03634, 2017 | 240 | 2017 |
Hilfer–Katugampola fractional derivatives DS Oliveira, EC De Oliveira Computational and Applied Mathematics 37 (3), 3672-3690, 2018 | 203 | 2018 |
On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the -Hilfer operator JVC Sousa, EC de Oliveira Journal of Fixed Point Theory and Applications 20 (3), 96, 2018 | 184 | 2018 |
Ulam–Hyers stability of a nonlinear fractional Volterra integro-differential equation JVC Sousa, EC De Oliveira Applied Mathematics Letters 81, 50-56, 2018 | 179 | 2018 |
Stability of ψ-Hilfer impulsive fractional differential equations JVC Sousa, KD Kucche, EC De Oliveira Applied Mathematics Letters 88, 73-80, 2019 | 168 | 2019 |
Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics EC De Oliveira, F Mainardi, J Vaz Jr The European Physical Journal Special Topics 193 (1), 161-171, 2011 | 166 | 2011 |
Ulam–Hyers–Rassias stability for a class of fractional integro-differential equations EC de Oliveira, JVC Sousa Results in Mathematics 73 (3), 111, 2018 | 161 | 2018 |
The many faces of Maxwell, Dirac and Einstein equations WA Rodrigues, EC de Oliveira Springer, 2007 | 161 | 2007 |
Leibniz type rule: ψ-Hilfer fractional operator JVC Sousa, EC De Oliveira Communications in Nonlinear Science and Numerical Simulation 77, 305-311, 2019 | 159 | 2019 |
On the ψ-Hilfer fractional derivative J Vanterler da C Sousa, E Capelas de Oliveira Communications in Nonlinear Science and Numerical Simulations 60, 72-91, 2018 | 105 | 2018 |
Differentiation to fractional orders and the fractional telegraph equation R Figueiredo Camargo, AO Chiacchio, E Capelas de Oliveira Journal of Mathematical Physics 49 (3), 2008 | 94 | 2008 |
The fractional Schrödinger equation for delta potentials EC De Oliveira, FS Costa, J Vaz Journal of Mathematical Physics 51 (12), 2010 | 88 | 2010 |
Cálculo fracionário RF Camargo, EC Oliveira Livraria da Fısica, Sao Paulo, 2015 | 76 | 2015 |
Covariant, algebraic, and operator spinors VL Figueiredo, E Capelas de Oliveira, WA Rodrigues International journal of theoretical physics 29, 371-395, 1990 | 76 | 1990 |
On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator R Figueiredo Camargo, E Capelas de Oliveira, J Vaz Journal of mathematical physics 50 (12), 2009 | 68 | 2009 |