Similarity network fusion for aggregating data types on a genomic scale B Wang, AM Mezlini, F Demir, M Fiume, Z Tu, M Brudno, B Haibe-Kains, ... Nature methods 11 (3), 333-337, 2014 | 1772 | 2014 |
Integrated genomic characterization of pancreatic ductal adenocarcinoma BJ Raphael, RH Hruban, AJ Aguirre, RA Moffitt, JJ Yeh, C Stewart, ... Cancer cell 32 (2), 185-203. e13, 2017 | 1576 | 2017 |
A survey of statistical network models A Goldenberg, AX Zheng, SE Fienberg, EM Airoldi Foundations and Trends® in Machine Learning 2 (2), 129-233, 2010 | 1149 | 2010 |
Intertumoral heterogeneity within medulloblastoma subgroups FMG Cavalli, M Remke, L Rampasek, J Peacock, DJH Shih, B Luu, ... Cancer cell 31 (6), 737-754. e6, 2017 | 1073 | 2017 |
Sensitive tumour detection and classification using plasma cell-free DNA methylomes SY Shen, R Singhania, G Fehringer, A Chakravarthy, MHA Roehrl, ... Nature 563 (7732), 579-583, 2018 | 723 | 2018 |
Do no harm: a roadmap for responsible machine learning for health care J Wiens, S Saria, M Sendak, M Ghassemi, VX Liu, F Doshi-Velez, K Jung, ... Nature medicine 25 (9), 1337-1340, 2019 | 718 | 2019 |
Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities M Zitnik, F Nguyen, B Wang, J Leskovec, A Goldenberg, MM Hoffman Information Fusion 50, 71-91, 2019 | 521 | 2019 |
What clinicians want: contextualizing explainable machine learning for clinical end use S Tonekaboni, S Joshi, MD McCradden, A Goldenberg Machine learning for healthcare conference, 359-380, 2019 | 438 | 2019 |
Transparency and reproducibility in artificial intelligence B Haibe-Kains, GA Adam, A Hosny, F Khodakarami, ... Nature 586 (7829), E14-E16, 2020 | 346 | 2020 |
TensorFlow: biology’s gateway to deep learning? L Rampasek, A Goldenberg Cell systems 2 (1), 12-14, 2016 | 283 | 2016 |
Explaining image classifiers by counterfactual generation CH Chang, E Creager, A Goldenberg, D Duvenaud arXiv preprint arXiv:1807.08024, 2018 | 271 | 2018 |
PharmacoGx: an R package for analysis of large pharmacogenomic datasets P Smirnov, Z Safikhani, N El-Hachem, D Wang, A She, C Olsen, ... Bioinformatics 32 (8), 1244-1246, 2016 | 264 | 2016 |
Machine learning approaches to drug response prediction: challenges and recent progress G Adam, L Rampášek, Z Safikhani, P Smirnov, B Haibe-Kains, ... NPJ precision oncology 4 (1), 19, 2020 | 260 | 2020 |
Early statistical detection of anthrax outbreaks by tracking over-the-counter medication sales A Goldenberg, G Shmueli, RA Caruana, SE Fienberg Proceedings of the National Academy of Sciences 99 (8), 5237-5240, 2002 | 258 | 2002 |
Unsupervised representation learning for time series with temporal neighborhood coding S Tonekaboni, D Eytan, A Goldenberg arXiv preprint arXiv:2106.00750, 2021 | 249 | 2021 |
Biological embedding of experience: a primer on epigenetics MJ Aristizabal, I Anreiter, T Halldorsdottir, CL Odgers, TW McDade, ... Proceedings of the National Academy of Sciences 117 (38), 23261-23269, 2020 | 221 | 2020 |
iReckon: simultaneous isoform discovery and abundance estimation from RNA-seq data AM Mezlini, EJM Smith, M Fiume, O Buske, GL Savich, S Shah, S Aparicio, ... Genome research 23 (3), 519-529, 2013 | 162 | 2013 |
Applying machine learning in liver disease and transplantation: a comprehensive review A Spann, A Yasodhara, J Kang, K Watt, BO Wang, A Goldenberg, M Bhat Hepatology 71 (3), 1093-1105, 2020 | 161 | 2020 |
To embed or not: network embedding as a paradigm in computational biology W Nelson, M Zitnik, B Wang, J Leskovec, A Goldenberg, R Sharan Frontiers in genetics 10, 381, 2019 | 158 | 2019 |
Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma H Suzuki, SA Kumar, S Shuai, A Diaz-Navarro, A Gutierrez-Fernandez, ... Nature 574 (7780), 707-711, 2019 | 153 | 2019 |