关注
Chengkai Zhang
Chengkai Zhang
China University of Peteoleum-Beijing
在 cup.edu.cn 的电子邮件经过验证
标题
引用次数
引用次数
年份
Production performance of oil shale in-situ conversion with multilateral wells
X Song, C Zhang, Y Shi, G Li
Energy 189, 116145, 2019
662019
U-net generative adversarial network for subsurface facies modeling
C Zhang, X Song, L Azevedo
Computational Geosciences 25 (1), 553-573, 2021
492021
Real-time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks
C Zhang, X Song, Y Su, G Li
Journal of Petroleum Science and Engineering 213, 110396, 2022
362022
Real-time and multi-objective optimization of rate-of-penetration using machine learning methods
C Zhang, X Song, Z Liu, B Ma, Z Lv, Y Su, G Li, Z Zhu
Geoenergy Science and Engineering 223, 211568, 2023
212023
Real-time prediction of logging parameters during the drilling process using an attention-based Seq2Seq model
R Zhang, C Zhang, X Song, Z Li, Y Su, G Li, Z Zhu
Geoenergy Science and Engineering 233, 212279, 2024
132024
Bottom hole pressure prediction based on hybrid neural networks and Bayesian optimization
C Zhang, R Zhang, Z Zhu, X Song, Y Su, G Li, L Han
Petroleum Science 20 (6), 3712-3722, 2023
102023
Early Gas Kick Warning Based on Temporal Autoencoder
Z Zhu, D Zhou, D Yang, X Song, M Zhou, C Zhang, S Duan, L Zhu
Energies 16 (12), 4606, 2023
42023
Energy Consumption Prediction for Drilling Pumps Based on a Long Short-Term Memory Attention Method
C Wang, Z Yan, Q Li, Z Zhu, C Zhang
Applied Sciences 14 (22), 10750, 2024
12024
Predicting Rate of Penetration Using the Dual Seq2Seq Model
T Pan, Z Li, C Zhang, X Song, L Zhu, Z Yan, Z Zhu, Y Sun, P Ni
ARMA/DGS/SEG International Geomechanics Symposium, ARMA-IGS-2023-0353, 2023
12023
水平井钻井提速-减阻-清屑多目标协同优化方法
丁建新, 李雪松, 宋先知, 张诚恺, 马宝东, 刘子豪, 祝兆鹏
石油机械 51 (11), 1-10, 2023
12023
Integrating mechanics and machine learning for build-up rate prediction
Z Li, X Song, Q Yu, N Gong, Z Jiang, Z Zhu, C Zhang
Geoenergy Science and Engineering 246, 213594, 2025
2025
Predicting Rate of Penetration of Horizontal Wells Based on the Di-GRU Model
T Pan, X Song, B Ma, Z Zhu, L Zhu, M Liu, C Zhang, T Long
Rock Mechanics and Rock Engineering, 1-16, 2024
2024
Intelligent Prediction of Rate of Penetration Using Mechanism-Data Fusion and Transfer Learning
Z Huang, L Zhu, C Wang, C Zhang, Q Li, Y Jia, L Wang
Processes 12 (10), 2133, 2024
2024
Intelligent Identification Workflow of Drilling Conditions Combining Deep Learning and Drilling Knowledge
Z Liu, X Song, S Ye, B Ma, C Zhang, Z Wang, X Yao, Z Zhu, Y Wang
International Conference on Offshore Mechanics and Arctic Engineering 87868 …, 2024
2024
Real-Time Prediction of Rate of Penetration Using Multi-Gene Genetic Programming
B Ma, Z Zhu, X Song, C Zhang, Z Liu
International Conference on Offshore Mechanics and Arctic Engineering 87868 …, 2024
2024
钻柱摩阻扭矩智能预测模型与解释
刘慕臣, 宋先知, 李大钰, 朱硕, 付利, 祝兆鹏, 张诚恺, 潘涛
Coal Geology & Exploration 51 (9), 89-99, 2023
2023
A Novel Hybrid Transfer Learning Method for Bottom Hole Pressure Prediction
R Zhang, X Song, G Li, Z Lv, Z Zhu, C Zhang, C Gong
International Conference on Offshore Mechanics and Arctic Engineering 86915 …, 2023
2023
Real-time prediction of oil and gas drilling rate based on physics-based model and particle filter method
C Zhang, X Song, Y Su
Enhanced Prediction of Rate of Penetration Using the Interpretable Hybrid Temporal Graph Neural Network
R Zhang, Z Zhu, X Song, G Li, Z Lv, C Zhang, C Wang
Available at SSRN 4903909, 0
系统目前无法执行此操作,请稍后再试。
文章 1–19