关注
Julian Arnold
Julian Arnold
PhD Candidate, University of Basel
在 unibas.ch 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Modern applications of machine learning in quantum sciences
A Dawid, J Arnold, B Requena, A Gresch, M Płodzień, K Donatella, ...
arXiv preprint arXiv:2204.04198, 2022
812022
Interpretable and unsupervised phase classification
J Arnold, F Schäfer, M Žonda, AUJ Lode
Physical Review Research 3 (3), 033052, 2021
372021
Replacing neural networks by optimal analytical predictors for the detection of phase transitions
J Arnold, F Schäfer
Physical Review X 12 (3), 031044, 2022
202022
Machine learning product state distributions from initial reactant states for a reactive atom–diatom collision system
J Arnold, JC San Vicente Veliz, D Koner, N Singh, RJ Bemish, M Meuwly
The Journal of Chemical Physics 156 (3), 2022
182022
Machine learning for observables: Reactant to product state distributions for atom–diatom collisions
J Arnold, D Koner, S Käser, N Singh, RJ Bemish, M Meuwly
The Journal of Physical Chemistry A 124 (35), 7177-7190, 2020
162020
Combining machine learning and spectroscopy to model reactive atom+ diatom collisions
JC San Vicente Veliz, J Arnold, RJ Bemish, M Meuwly
The Journal of Physical Chemistry A 126 (43), 7971-7980, 2022
52022
Mapping out phase diagrams with generative classifiers
J Arnold, F Schäfer, A Edelman, C Bruder
Physical Review Letters 132 (20), 207301, 2024
32024
Performance Bounds for Quantum Feedback Control
F Holtorf, F Schäfer, J Arnold, CV Rackauckas, A Edelman
IEEE Transactions on Automatic Control, 2024
2*2024
Fast detection of phase transitions with multi-task learning-by-confusion
J Arnold, F Schäfer, N Lörch
arXiv preprint arXiv:2311.09128, 2023
22023
Machine learning phase transitions: Connections to the Fisher information
J Arnold, N Lörch, F Holtorf, F Schäfer
arXiv preprint arXiv:2311.10710, 2023
12023
Phase Transitions in the Output Distribution of Large Language Models
J Arnold, F Holtorf, F Schäfer, N Lörch
arXiv preprint arXiv:2405.17088, 2024
2024
Sum-of-Squares Bounds for Quantum Optimal Control
F Holtorf, F Schäfer, J Arnold, C Rackauckas, A Edelman
2023 IEEE International Conference on Quantum Computing and Engineering (QCE …, 2023
2023
How deep neural networks learn thermal phase transitions
J Arnold, F Schäfer
APS March Meeting Abstracts 2023, Q53. 002, 2023
2023
Revealing phase diagrams of quantum systems with optimal predictors
J Arnold, F Schäfer
APS March Meeting Abstracts 2023, S62. 002, 2023
2023
Entropy production in ticking clocks
J Arnold
https://arnoldjulian.github.io/project/ticking_clocks/thesis.pdf, 2021
2021
Quantum simulators, phase transitions, resonant tunneling, and variances: A many-body perspective
AUJ Lode, OE Alon, J Arnold, A Bhowmik, M Büttner, LS Cederbaum, ...
International Conference on High Performance Computing in Science and …, 2021
2021
Interpretable and unsupervised phase classification based on averaged input features
J Arnold, F Schäfer, M Zonda, A Lode
APS March Meeting Abstracts 2021, L21. 002, 2021
2021
系统目前无法执行此操作,请稍后再试。
文章 1–17