On the Cahn–Hilliard equation with irregular potentials and dynamic boundary conditions G Gilardi, A Miranville, G Schimperna Commun. Pure Appl. Anal 8 (3), 881-912, 2009 | 155 | 2009 |
Analysis of a phase-field model for two-phase compressible fluids E Feireisl, H Petzeltová, E Rocca, G Schimperna Mathematical Models and Methods in Applied Sciences 20 (07), 1129-1160, 2010 | 140 | 2010 |
Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations G Akagi, G Schimperna, A Segatti Journal of Differential Equations 261 (6), 2935-2985, 2016 | 128 | 2016 |
Local existence for Frémond’s model of damage in elastic materials E Bonetti, G Schimperna Continuum Mechanics and Thermodynamics 16, 319-335, 2004 | 106 | 2004 |
A Cahn–Hilliard model in a domain with non-permeable walls GR Goldstein, A Miranville, G Schimperna Physica D: Nonlinear Phenomena 240 (8), 754-766, 2011 | 97 | 2011 |
On the 2D Cahn-Hilliard equation with inertial term M Grasselli, G Schimperna, S Zelik Communications in Partial Differential Equations 34 (2), 137-170, 2009 | 94 | 2009 |
Long time behavior of solutions to the Caginalp system with singular potential M Grasselli, H Petzeltová, G Schimperna Zeitschrift Fur Analysis Und Ihre Anwendungen 25 (1), 51, 2006 | 81 | 2006 |
Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions G Gilardi, A Miranville, G Schimperna Chinese Annals of Mathematics, Series B 31, 679-712, 2010 | 78 | 2010 |
A new approach to non-isothermal models for nematic liquid crystals E Feireisl, M Frémond, E Rocca, G Schimperna Archive for Rational Mechanics and Analysis 205 (2), 651-672, 2012 | 75 | 2012 |
On a doubly nonlinear model for the evolution of damaging in viscoelastic materials E Bonetti, G Schimperna, A Segatti Journal of Differential Equations 218 (1), 91-116, 2005 | 75 | 2005 |
Analysis of a diffuse interface model of multispecies tumor growth M Dai, E Feireisl, E Rocca, G Schimperna, ME Schonbek Nonlinearity 30 (4), 1639, 2017 | 66 | 2017 |
On the 3D Cahn-Hilliard equation with inertial term M Grasselli, G Schimperna, A Segatti, S Zelik Journal of Evolution Equations 9 (2), 371-404, 2009 | 61 | 2009 |
Asymptotic behavior of a nonisothermal viscous Cahn–Hilliard equation with inertial term M Grasselli, H Petzeltová, G Schimperna Journal of Differential Equations 239 (1), 38-60, 2007 | 61 | 2007 |
On a multi-species Cahn-Hilliard-Darcy tumor growth model with singular potentials S Frigeri, KF Lam, E Rocca, G Schimperna arXiv preprint arXiv:1709.01469, 2017 | 60 | 2017 |
The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials M Grasselli, A Miranville, G Schimperna Discrete Contin. Dyn. Syst 28 (1), 67-98, 2010 | 60 | 2010 |
On a model for phase separation in binary alloys driven by mechanical effects E Bonetti, P Colli, W Dreyer, G Gilardi, G Schimperna, J Sprekels Physica D: Nonlinear Phenomena 165 (1-2), 48-65, 2002 | 59 | 2002 |
On a non-isothermal model for nematic liquid crystals E Feireisl, E Rocca, G Schimperna Nonlinearity 24 (1), 243, 2010 | 58 | 2010 |
Universal attractor for some singular phase transition systems E Rocca, G Schimperna Physica D: Nonlinear Phenomena 192 (3-4), 279-307, 2004 | 58 | 2004 |
On the long time behavior of a tumor growth model A Miranville, E Rocca, G Schimperna Journal of Differential Equations 267 (4), 2616-2642, 2019 | 56 | 2019 |
On a class of Cahn--Hilliard models with nonlinear diffusion G Schimperna, I Pawłow SIAM Journal on Mathematical Analysis 45 (1), 31-63, 2013 | 55 | 2013 |