关注
Haifa Tamiminia
Haifa Tamiminia
PhD Candidate, SUNY ESF
在 esf.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Google Earth Engine for geo-big data applications: A meta-analysis and systematic review
H Tamiminia, B Salehi, M Mahdianpari, L Quackenbush, S Adeli, B Brisco
ISPRS journal of photogrammetry and remote sensing 164, 152-170, 2020
9502020
Wetland monitoring using SAR data: A meta-analysis and comprehensive review
S Adeli, B Salehi, M Mahdianpari, LJ Quackenbush, B Brisco, ...
Remote Sensing 12 (14), 2190, 2020
1052020
A particle swarm optimized kernel-based clustering method for crop mapping from multi-temporal polarimetric L-band SAR observations
H Tamiminia, S Homayouni, H McNairn, A Safari
International journal of applied earth observation and geoinformation 58 …, 2017
432017
comparison of machine and deep learning methods to estimate shrub willow biomass from UAS imagery
H Tamiminia, B Salehi, M Mahdianpari, CM Beier, DJ Klimkowski, TA Volk
Canadian journal of remote sensing 47 (2), 209-227, 2021
192021
State-wide forest canopy height and aboveground biomass map for New York with 10 m resolution, integrating GEDI, Sentinel-1, and Sentinel-2 data
H Tamiminia, B Salehi, M Mahdianpari, T Goulden
Ecological informatics 79, 102404, 2024
92024
Decision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis
H Tamiminia, B Salehi, M Mahdianpari, CM Beier, L Johnson, DB Phoenix, ...
Geocarto international 37 (26), 12763-12791, 2022
82022
A comparison of decision tree-based models for forest above-ground biomass estimation using a combination of airborne lidar and landsat data
H Tamiminia, B Salehi, M Mahdianpari, CM Beier, L Johnson, DB Phoenix
ISPRS annals of the photogrammetry, remote sensing and spatial information …, 2021
82021
Evaluating pixel-based and object-based approaches for forest above-ground biomass estimation using a combination of optical, Sar, and an extreme gradient boosting model
H Tamiminia, B Salehi, M Mahdianpari, CM Beier, L Johnson
ISPRS annals of the photogrammetry, remote sensing and spatial information …, 2022
72022
A comparison of random forest and light gradient boosting machine for forest above-ground biomass estimation using a combination of landsat, alos palsar, and airborne lidar data
H Tamiminia, B Salehi, M Mahdianpari, CM Beier, L Johnson, DB Phoenix
The International Archives of the Photogrammetry, Remote Sensing and Spatial …, 2021
62021
Random forest outperformed convolutional neural networks for shrub willow above ground biomass estimation using multi-spectral UAS imagery
H Tamiminia, B Salehi, M Mahdianpari, CM Beier, DJ Klimkowski, TA Volk
2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 8269 …, 2021
52021
Mapping two decades of New York State Forest aboveground biomass change using remote sensing
H Tamiminia, B Salehi, M Mahdianpari, CM Beier, L Johnson
Remote Sensing 14 (16), 4097, 2022
42022
A Comparative Analysis of Pixel-Based and Object-Based Approaches for Forest Above-Ground Biomass Estimation Using Random Forest Model
H Tamiminia, B Salehi, M Mahdianpari, CM Beier, L Johnson
The International Archives of the Photogrammetry, Remote Sensing and Spatial …, 2022
12022
Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land Cover Mapping
H Tamiminia, S Homayouni, A Safari
The International Archives of the Photogrammetry, Remote Sensing and Spatial …, 2015
12015
Generating A 10 M Resolution Canopy Height Model Of New York State Using Gedi And Sentinel-2 Data
H Tamiminia, B Salehi, M Mahdianpari
IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium …, 2023
2023
Forest Aboveground Biomass Estimation and Change Monitoring Using Multi-Source Remote Sensing Data and Machine Learning Techniques
H Tamiminia
College of Environmental Science, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–15