CO 2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions T Burdyny, WA Smith Energy & Environmental Science 12 (5), 1442-1453, 2019 | 920 | 2019 |
Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays M Ma, K Djanashvili, WA Smith Angewandte chemie international edition 55 (23), 6680-6684, 2016 | 644 | 2016 |
Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide‐derived nanostructured silver electrocatalysts M Ma, BJ Trześniewski, J Xie, WA Smith Angewandte Chemie 128 (33), 9900-9904, 2016 | 557 | 2016 |
In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: the effect of pH on electrochemical activity BJ Trześniewski, O Diaz-Morales, DA Vermaas, A Longo, W Bras, ... Journal of the American Chemical Society 137 (48), 15112-15121, 2015 | 542 | 2015 |
Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting A Wolcott, WA Smith, TR Kuykendall, Y Zhao, JZ Zhang Advanced Functional Materials 19 (12), 1849-1856, 2009 | 513 | 2009 |
Photoelectrochemical Water Splitting Using Dense and Aligned TiO2 Nanorod Arrays A Wolcott, WA Smith, TR Kuykendall, Y Zhao, JZ Zhang Small 5 (1), 104-111, 2009 | 483 | 2009 |
Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO2 Reduction at Commercially Viable Current Densities GL De Gregorio, T Burdyny, A Loiudice, P Iyengar, WA Smith, ... ACS catalysis 10 (9), 4854-4862, 2020 | 410 | 2020 |
Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy NJ Firet, WA Smith ACS Catalysis 7, 606~612, 2017 | 396 | 2017 |
Pathways to electrochemical solar-hydrogen technologies S Ardo, DF Rivas, MA Modestino, VS Greiving, FF Abdi, EA Llado, ... Energy & environmental science 11 (10), 2768-2783, 2018 | 304 | 2018 |
Role of the Carbon-Based Gas Diffusion Layer on Flooding in a Gas Diffusion Electrode Cell for Electrochemical CO2 Reduction K Yang, R Kas, WA Smith, T Burdyny ACS Energy Letters 6 (1), 33-40, 2020 | 294 | 2020 |
In Situ Infrared Spectroscopy Reveals Persistent Alkalinity near Electrode Surfaces during CO2 Electroreduction K Yang, R Kas, WA Smith Journal of the American Chemical Society 141 (40), 15891-15900, 2019 | 236 | 2019 |
Photocharged BiVO 4 photoanodes for improved solar water splitting BJ Trześniewski, WA Smith Journal of Materials Chemistry A 4 (8), 2919-2926, 2016 | 231 | 2016 |
Interfacial band-edge energetics for solar fuels production WA Smith, ID Sharp, NC Strandwitz, J Bisquert Energy & Environmental Science 8 (10), 2851-2862, 2015 | 216 | 2015 |
Introductory Guide to Assembling and Operating Gas Diffusion Electrodes for Electrochemical CO2 Reduction K Liu, WA Smith, T Burdyny ACS energy letters 4 (3), 639-643, 2019 | 211 | 2019 |
Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation IA Digdaya, GWP Adhyaksa, BJ Trześniewski, EC Garnett, WA Smith Nature communications 8 (1), 15968, 2017 | 207 | 2017 |
Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting M Valenti, MP Jonsson, G Biskos, A Schmidt-Ott, WA Smith Journal of Materials Chemistry A 4 (46), 17891-17912, 2016 | 205 | 2016 |
Bipolar Membrane-Assisted Solar Water Splitting in Optimal pH. J Luo, DA Vermaas, D Bi, A Hagfeldt, WA Smith, M Grätzel Advanced Energy Materials 6 (13), 2016 | 195 | 2016 |
Selective electrochemical reduction of CO 2 to CO on CuO-derived Cu nanowires M Ma, K Djanashvili, WA Smith Physical Chemistry Chemical Physics 17 (32), 20861-20867, 2015 | 191 | 2015 |
Near-complete suppression of surface losses and total internal quantum efficiency in BiVO 4 photoanodes BJ Trześniewski, IA Digdaya, T Nagaki, S Ravishankar, I Herraiz-Cardona, ... Energy & Environmental Science 10 (6), 1517-1529, 2017 | 180 | 2017 |
Pathways to industrial-scale fuel out of thin air from CO2 electrolysis WA Smith, T Burdyny, DA Vermaas, H Geerlings Joule 3 (8), 1822-1834, 2019 | 179 | 2019 |