A computational workflow to study particle transport and filtration in porous media: Coupling CFD and deep learning A Marcato, G Boccardo, D Marchisio Chemical Engineering Journal 417, 128936, 2021 | 61 | 2021 |
From computational fluid dynamics to structure interpretation via neural networks: an application to flow and transport in porous media A Marcato, G Boccardo, D Marchisio Industrial & Engineering Chemistry Research 61 (24), 8530-8541, 2022 | 30 | 2022 |
Prediction of local concentration fields in porous media with chemical reaction using a multi scale convolutional neural network A Marcato, JE Santos, G Boccardo, H Viswanathan, D Marchisio, ... Chemical Engineering Journal 455, 140367, 2023 | 18 | 2023 |
Reconciling deep learning and first‐principle modelling for the investigation of transport phenomena in chemical engineering A Marcato, D Marchisio, G Boccardo The Canadian Journal of Chemical Engineering 101 (6), 3013-3018, 2023 | 7 | 2023 |
A computational workflow to study particle transport in porous media: coupling CFD and deep learning A Marcato, G Boccardo, DL Marchisio Computer Aided Chemical Engineering 48, 1759-1764, 2020 | 7 | 2020 |
Modeling the 4D discharge of lithium-ion batteries with a multiscale time-dependent deep learning framework A Marcato, JE Santos, C Liu, G Boccardo, D Marchisio, AA Franco Energy Storage Materials 63, 102927, 2023 | 6 | 2023 |
A diffused-interface model for the lyophilization of a packed bed of spray-frozen particles L Stratta, MB Adali, AA Barresi, G Boccardo, A Marcato, R Tuccinardi, ... Chemical Engineering Science 275, 118726, 2023 | 2 | 2023 |
Journey over Destination: Dynamic Sensor Placement Enhances Generalization A Marcato, E Guiltinan, H Viswanathan, D O'Malley, N Lubbers, ... Machine Learning: Science and Technology, 2024 | | 2024 |
Learning a general model of single phase flow in complex 3D porous media JE Santos, A Marcato, Q Kang, M Mehana, D O’Malley, H Viswanathan, ... Machine Learning: Science and Technology 5 (2), 025039, 2024 | | 2024 |
Deep neural networks as scale-bridging tools for flow and transport modelling in porous media G Boccardo, A Marcato, JE Santos, M Prodanovic, D Marchisio AGU23, 2023 | | 2023 |
Reconstruction of Fields from Sparse Sensing: Differentiable Sensor Placement Enhances Generalization A Marcato, D O'Malley, H Viswanathan, E Guiltinan, JE Santos arXiv preprint arXiv:2312.09176, 2023 | | 2023 |
Generating Multiphase Flow Configurations Using Diffusion Models J Chung, A Marcato, E Guiltinan, YT Lin, JE Santos AGU23, 2023 | | 2023 |
Improving Sensor Placement for Enhanced Field Reconstruction: A Machine Learning Differentiable Workflow A Marcato, EJ Guiltinan, D O'Malley, HS Viswanathan, JE Santos AGU23, 2023 | | 2023 |
PySimFrac: A Python Library for Generating, Analyzing, and Simulating Synthetic Fractures EJ Guiltinan, JE Santos, P Purswani, A Marcato, J Hyman AGU23, 2023 | | 2023 |
Generating Multiphase Fluid Configurations in Fractures using Diffusion Models J Chung, A Marcato, EJ Guiltinan, T Mukerji, YT Lin, JE Santos arXiv preprint arXiv:2312.04375, 2023 | | 2023 |
Deep neural networks as data-driven models for flow and transport in porous media A Marcato Politecnico di Torino, 2023 | | 2023 |
Machine learning for multivariate parameter identification of first-principle model: the Mg (OH) 2 test case A Raponi, A Marcato, G Boccardo, A Buffo, M Vanni, D Marchisio -, 2023 | | 2023 |
Journey Over Destination: Differentiable Sensor Placement Enhances Generalization A Marcato, JA Estrada Santos, EJ Guiltinan Los Alamos National Laboratory (LANL), Los Alamos, NM (United States), 2023 | | 2023 |
Prediction of Concentration Fields in Porous Media Using a Multiscale Neural Network JE Santos, A Marcato, G Boccardo, HS Viswanathan, D Marchisio, ... AGU Fall Meeting Abstracts 2022, H12Q-0882, 2022 | | 2022 |
Accoppiamento di CFD e Machine Learning: due casi studio nell'ingegneria di processo= Coupling CFD and Machine Learning: two case studies in process engineering A Marcato Politecnico di Torino, 2019 | | 2019 |