Variational Continual Learning CV Nguyen, Y Li, TD Bui, RE Turner | 765 | 2018 |
Variational Continual Learning CV Nguyen, Y Li, TD Bui, RE Turner arXiv preprint arXiv:1710.10628, 2017 | 765 | 2017 |
Rényi divergence variational inference Y Li, RE Turner Advances in Neural Information Processing Systems, 1073-1081, 2016 | 319 | 2016 |
Disentangled Sequential Autoencoder L Yingzhen, S Mandt International Conference on Machine Learning, 5656-5665, 2018 | 302* | 2018 |
Deep gaussian processes for regression using approximate expectation propagation T Bui, D Hernández-Lobato, J Hernandez-Lobato, Y Li, R Turner International Conference on Machine Learning, 1472-1481, 2016 | 265 | 2016 |
Black-box α-divergence minimization JM Hernández-Lobato, Y Li, M Rowland, D Hernández-Lobato, TD Bui, ... International Machine Learning Society, 2016 | 264 | 2016 |
Dropout inference in bayesian neural networks with alpha-divergences Y Li, Y Gal Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017 | 224 | 2017 |
Generalization in reinforcement learning with selective noise injection and information bottleneck M Igl, K Ciosek, Y Li, S Tschiatschek, C Zhang, S Devlin, K Hofmann Advances in Neural Information Processing Systems, 13978-13990, 2019 | 180 | 2019 |
Stochastic expectation propagation Y Li, JM Hernández-Lobato, RE Turner Advances in Neural Information Processing Systems, 2323-2331, 2015 | 153 | 2015 |
On the expressiveness of approximate inference in bayesian neural networks A Foong, D Burt, Y Li, R Turner Advances in Neural Information Processing Systems 33, 2020 | 124 | 2020 |
'In-Between'Uncertainty in Bayesian Neural Networks AYK Foong, Y Li, JM Hernández-Lobato, RE Turner arXiv preprint arXiv:1906.11537, 2019 | 117 | 2019 |
Gradient Estimators for Implicit Models Y Li, RE Turner arXiv preprint arXiv:1705.07107, 2017 | 103 | 2017 |
Are generative classifiers more robust to adversarial attacks? Y Li, J Bradshaw, Y Sharma International Conference on Machine Learning, 3804-3814, 2019 | 99 | 2019 |
Variational implicit processes C Ma, Y Li, JM Hernández-Lobato International Conference on Machine Learning, 4222-4233, 2019 | 79 | 2019 |
A causal view on robustness of neural networks C Zhang, K Zhang, Y Li Advances in Neural Information Processing Systems 33, 289-301, 2020 | 78 | 2020 |
Approximate Inference with Amortised MCMC Y Li, RE Turner, Q Liu arXiv preprint arXiv:1702.08343, 2017 | 63 | 2017 |
Inverse Graphics GAN: Learning to Generate 3D Shapes from Unstructured 2D Data S Lunz, Y Li, A Fitzgibbon, N Kushman arXiv preprint arXiv:2002.12674, 2020 | 55 | 2020 |
Meta-Learning for Stochastic Gradient MCMC W Gong, Y Li, JM Hernández-Lobato arXiv preprint arXiv:1806.04522, 2018 | 50 | 2018 |
Sliced Kernelized Stein Discrepancy W Gong, Y Li, JM Hernández-Lobato arXiv preprint arXiv:2006.16531, 2020 | 41 | 2020 |
On the importance of the Kullback-Leibler divergence term in variational autoencoders for text generation V Prokhorov, E Shareghi, Y Li, MT Pilehvar, N Collier arXiv preprint arXiv:1909.13668, 2019 | 40 | 2019 |