关注
Christian Tomani
Christian Tomani
在 tum.de 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Post-hoc Uncertainty Calibration for Domain Drift Scenarios
C Tomani, S Gruber, ME Erdem, D Cremers, F Buettner
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
662021
Towards trustworthy predictions from deep neural networks with fast adversarial calibration
C Tomani, F Buettner
Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, 2020
312020
What Makes Graph Neural Networks Miscalibrated?
HHH Hsu, Y Shen, C Tomani, D Cremers
Advances in Neural Information Processing Systems 36, 2022
282022
Parameterized Temperature Scaling for Boosting the Expressive Power in Post-Hoc Uncertainty Calibration
C Tomani, D Cremers, F Buettner
Proceedings of the European Conference on Computer Vision (ECCV), 2022
252022
Beyond In-Domain Scenarios: Robust Density-Aware Calibration
C Tomani, F Waseda, Y Shen, D Cremers
International Conference on Machine Learning (ICML 2023), 2023
52023
Transforming a trained artificial intelligence model into a trustworthy artificial intelligence model
F Büttner, C Tomani
US Patent App. 17/524,204, 2022
52022
Uncertainty-Based Abstention in LLMs Improves Safety and Reduces Hallucinations
C Tomani, K Chaudhuri, I Evtimov, D Cremers, M Ibrahim
arXiv preprint arXiv:2404.10960, 2024
32024
Trustworthy predictions using deep neural networks based on adversarial calibration
F Büttner, C Tomani
US Patent 11,455,531, 2022
12022
CHALLENGER: Training with Attribution Maps
C Tomani, D Cremers
arXiv preprint arXiv:2205.15094, 2022
12022
Quality-Aware Translation Models: Efficient Generation and Quality Estimation in a Single Model
C Tomani, D Vilar, M Freitag, C Cherry, S Naskar, M Finkelstein, X Garcia, ...
Proceedings of the 62nd Annual Meeting of the Association for Computational …, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–10